Mu'ayyad al-din al-Urdi

Muayyad al-Din al-Urdi
Födelsedatum OK. 1200
Födelseort Syrien
Dödsdatum OK. 1266
En plats för döden Maragha ( Iran )
Land
Vetenskaplig sfär astronomi , ingenjörskonst
Arbetsplats Maraga observatorium

Muayyad ad-Din al-Urdi (ca 1200 - ca 1266) - en berömd syrisk vetenskapsman, en av de största astronomerna på XIII-talet, författaren till icke-ptolemaiska teorier om planetrörelser.

Biografi

Född ca. 1200 i Syrien [1] . Omkring 1239 arbetade han i Damaskus , där han var engagerad i ingenjörskonst , undervisning i geometri och konstruktion av astronomiska instrument . Han äger utvecklingen av Damaskus vattenförsörjningssystem . År 1259 eller lite tidigare anlände al-Urdi till Maraga (på inbjudan av Nasir ad-Din at-Tusi ), där han deltog i skapandet av det berömda Maraga-observatoriet , grundat på order av Khan Hulagu . Bland observatoriets anställda fanns också två av hans söner. Al-Urdi arbetade i Maraga fram till sin död (ca 1266)

Astronomiska instrument

Vid Maraga-observatoriet inkluderade al-Urdis uppgifter att bygga astronomiska instrument. I det arbete som har kommit ner till oss, Methods of Astronomical Observations, nämnde al-Urdi följande instrument från observatoriet, i vilket han deltog:

och andra, endast 11 stycken [2] .

Teorin om planetrörelser

Men den viktigaste prestationen av al-Urdi är konstruktionen av nya teorier om planeternas och månens rörelse, som han kanske började arbeta på redan innan han kom till Maragha.

Svårigheter i Ptolemaios teori

Grunden för medeltida astronomi var den ptolemaiska versionen av teorin om epicykler : teorin om bisektion av excentricitet , enligt vilken rörelsen av mitten av epicykeln ser enhetlig ut när den ses inte från mitten av den deferenta, utan från en viss punkt , som kallas ekvanten , eller utjämningspunkten. Men sedan 1000-talet har många astronomer noterat omöjligheten att tolka denna teori i termer av begreppet kapslade sfärer , den  fysiska grunden för medeltida astronomi. Enligt detta koncept representeras rörelsen längs den deferenta som rotationen av någon materiell sfär (i vilken en annan, liten sfär byggdes in, vars rotation representerade planetens rörelse längs epicykeln). En hård sfär kan faktiskt inte rotera på ett sådant sätt att rotationsvinkelhastigheten är konstant i förhållande till en punkt som ligger utanför rotationsaxeln. För att övervinna denna svårighet utvecklade ett antal astronomer vid Maraga-observatoriet (inklusive dess grundare Nasir ad-Din at-Tusi ) ett antal nya teorier om planetrörelser som förblev inom världens geocentriska system , men där, istället för ojämn rörelse längs en cirkel (som var fallet med Ptolemaios) rörde sig mitten av planetens epicykel längs en kombination av enhetliga rörelser längs flera cirklar [3] . Således bringades den matematiska apparaten i världens geocentriska system i linje med den tidens fysik. Denna aktivitet för att reformera teorin om planetrörelser kallas ibland för " Maraga-revolutionen ".

Teorin om al-Urdi

Ett av de mest framgångsrika försöken att skapa en sådan teori var teorin om al-Urdi. Treatise al-Urdi Book of Astronomy ( Kitab fi-l-hai'a ) med en presentation av hans teori hittades först 1979 [4] . Dessförinnan tillskrevs hans teori till Qutb al-Din ash-Shirazi , en elev till al-Tusi .

I al-Urdis teori är mitten av planetens deferenta en viss punkt (indikerad i figuren med bokstaven U ) som ligger i mitten mellan det ptolemaiska centrumet av den deferenta O och ekvanten E . Punkt D rör sig likformigt längs den deferenta , som är mitten av hjälpepicykeln, längs vilken punkt C rör sig likformigt , vilket är mitten av planetens huvudepicykel, det vill säga mittplaneten. Själva planeten S rör sig längs den andra, huvudsakliga epicykeln. Rörelsehastigheterna längs deferenta och den lilla epicykeln är valda på ett sådant sätt att den fyrsidiga UECD förblir en likbent trapets. Eftersom mitten av den lilla epicykeln D rör sig likformigt längs deferenten, ändras också vinkeln mellan segmentet CE (som förbinder mellanplaneten och ekvanten) och apsidelinjen TO likformigt, det vill säga mellanplanets rörelse från equant point ser enhetlig ut.

Den lilla epicykeln i teorin om al-Urdi är ansvarig för den zodiakaliska ojämlikheten i planetens rörelse. Dess roll är att när den vänder sig längs vördnadslinjen, ändrar den rörelsehastigheten i mitten av epicykeln. När den lilla epicykeln överför medelplaneten inuti deferenten, subtraheras de linjära rörelsehastigheterna längs deferenten och den lilla epicykeln; när medelplaneten är utanför deferenten, summeras de. Detta uppnår samma effekt som i teorin om equant: hastigheten för den genomsnittliga planeten nära höjdpunkten av deferent är den minsta, nära perigeum - den största. I det här fallet skiljer sig banan för medelplaneten C något från cirkeln, men denna skillnad är så liten att skillnaden i planets position i al-Urdis teori från Ptolemaios teori säkerligen inte kan upptäckas med blotta ögat.

En förespråkare för denna teori var hans samtida Qutb al-Din ash-Shirazi , som också arbetade i Maragha. Baserat på teorin om al-Urdi byggdes planetteorierna för östliga astronomer från en senare tid: Muhammad ibn ash-Shatir (Syrien, XIV-talet), Muhammad al-Khafri (Iran, XVI-talet) och andra. Teorin om rörelse för de yttre planeterna som utvecklats av Nicolaus Copernicus inom ramen för det heliocentriska systemet i världen är identisk med teorin om al-Urdi, med skillnaden att rörelsen sker runt solen, inte jorden. Det är möjligt att Copernicus kände till dessa modeller, även om de möjliga sätten för deras penetration in i renässansens Europa fortfarande är oklara [5] .

Al-Urdi utvecklade också nya teorier om månens och Merkurius rörelse .

Se även

Anteckningar

  1. Damaskus , Urd och Aleppo ges som hans födelseort .
  2. Schmidl 2007; Rosenfeld 2008.
  3. Rozhanskaya 1976 (s. 268-286); Kennedy 1966; Saliba 1991, 1996.
  4. Saliba 1979.
  5. Se recensioner Ragep 2007, Guessoum 2008.

Litteratur

Länkar