Fermats pseudoprimtal är sammansatta tal som klarar Fermat-testet . Uppkallad efter den franske matematikern Pierre de Fermat . I talteorin utgör Fermats pseudoprimer den viktigaste klassen av pseudoprimer .
Ett sammansatt tal kallas pseudoprimtal om det uppfyller något nödvändigt (men inte tillräckligt ) villkor för att talet ska vara primtal, det vill säga om det har vissa egenskaper hos ett primtal .
Fermats lilla sats säger att om n är ett primtal, så gäller kongruensen för varje tal ett samprimtal till n .
Ett sammansatt nummer n kallas ett Fermat-pseudoprime i bas a (samprime till n ) om jämförelse görs . Med andra ord, ett sammansatt tal sägs vara pseudoprime om det klarar Fermat-testet för att basera en [1] . Ett tal som är Fermats pseudoprimtal i varje coprime-bas kallas ett Carmichael-tal .
Det finns några varianter av definitionen:
Det finns oändligt många pseudoprimer i en given bas (desutom finns det oändligt många starka pseudoprimer [4] och oändligt många Carmichael-tal [5] ), men de är ganska sällsynta [6] . Det finns bara tre bas-2 Fermat-pseudoprimer mindre än 1000, 245 mindre än en miljon och endast 21853 mindre än 25 miljarder [4] .
De minsta Fermat-pseudosimplarna för varje bas a ≤ 200 anges i tabellen nedan; färger särskiljer tal genom antalet olika primtalsdelare [7] .
Fermats minsta pseudosimple | |||||||
---|---|---|---|---|---|---|---|
a | Minsta p-pF | a | Minsta p-pF | a | Minsta p-pF | a | Minsta p-pF |
ett | 4 = 2² | 51 | 65 = 5 13 | 101 | 175 = 5² 7 | 151 | 175 = 5² 7 |
2 | 341 = 11 31 | 52 | 85 = 5 17 | 102 | 133 = 7 19 | 152 | 153 = 3² 17 |
3 | 91 = 7 13 | 53 | 65 = 5 13 | 103 | 133 = 7 19 | 153 | 209 = 11 19 |
fyra | 15 = 3 5 | 54 | 55 = 5 11 | 104 | 105 = 3 5 7 | 154 | 155 = 5 31 |
5 | 124 = 2² 31 | 55 | 63 = 3² 7 | 105 | 451 = 11 41 | 155 | 231 = 3 7 11 |
6 | 35 = 5 7 | 56 | 57 = 3 19 | 106 | 133 = 7 19 | 156 | 217 = 7 31 |
7 | 25 = 5² | 57 | 65 = 5 13 | 107 | 133 = 7 19 | 157 | 186 = 2 3 31 |
åtta | 9 = 3² | 58 | 133 = 7 19 | 108 | 341 = 11 31 | 158 | 159 = 3 53 |
9 | 28 = 2² 7 | 59 | 87 = 3 29 | 109 | 117 = 3² 13 | 159 | 247 = 13 19 |
tio | 33 = 3 11 | 60 | 341 = 11 31 | 110 | 111 = 3 37 | 160 | 161 = 7 23 |
elva | 15 = 3 5 | 61 | 91 = 7 13 | 111 | 190 = 2 5 19 | 161 | 190=2 5 19 |
12 | 65 = 5 13 | 62 | 63 = 3² 7 | 112 | 121 = 11² | 162 | 481 = 13 37 |
13 | 21 = 3 7 | 63 | 341 = 11 31 | 113 | 133 = 7 19 | 163 | 186 = 2 3 31 |
fjorton | 15 = 3 5 | 64 | 65 = 5 13 | 114 | 115 = 5 23 | 164 | 165 = 3 5 11 |
femton | 341 = 11 13 | 65 | 112 = 2⁴ 7 | 115 | 133 = 7 19 | 165 | 172 = 2² 43 |
16 | 51 = 3 17 | 66 | 91 = 7 13 | 116 | 117 = 3² 13 | 166 | 301 = 7 43 |
17 | 45 = 3² 5 | 67 | 85 = 5 17 | 117 | 145 = 5 29 | 167 | 231 = 3 7 11 |
arton | 25 = 5² | 68 | 69 = 3 23 | 118 | 119 = 7 17 | 168 | 169 = 13² |
19 | 45 = 3² 5 | 69 | 85 = 5 17 | 119 | 177 = 3 59 | 169 | 231 = 3 7 11 |
tjugo | 21 = 3 7 | 70 | 169 = 13² | 120 | 121 = 11² | 170 | 171 = 3² 19 |
21 | 55 = 5 11 | 71 | 105 = 3 5 7 | 121 | 133 = 7 19 | 171 | 215 = 5 43 |
22 | 69 = 3 23 | 72 | 85 = 5 17 | 122 | 123 = 3 41 | 172 | 247 = 13 19 |
23 | 33 = 3 11 | 73 | 111 = 3 37 | 123 | 217 = 7 31 | 173 | 205 = 5 41 |
24 | 25 = 5² | 74 | 75 = 3 5² | 124 | 125 = 5³ | 174 | 175 = 5² 7 |
25 | 28 = 2² 7 | 75 | 91 = 7 13 | 125 | 133 = 7 19 | 175 | 319 = 11 19 |
26 | 27 = 3³ | 76 | 77 = 7 11 | 126 | 247 = 13 19 | 176 | 177 = 3 59 |
27 | 65 = 5 13 | 77 | 247 = 13 19 | 127 | 153 = 3² 17 | 177 | 196 = 2² 7² |
28 | 45 = 3² 5 | 78 | 341 = 11 31 | 128 | 129 = 3 43 | 178 | 247 = 13 19 |
29 | 35 = 5 7 | 79 | 91 = 7 13 | 129 | 217 = 7 31 | 179 | 185 = 5 37 |
trettio | 49 = 7² | 80 | 81 = 34 | 130 | 217 = 7 31 | 180 | 217 = 7 31 |
31 | 49 = 7² | 81 | 85 = 5 17 | 131 | 143 = 11 13 | 181 | 195 = 3 5 13 |
32 | 33 = 3 11 | 82 | 91 = 7 13 | 132 | 133 = 7 19 | 182 | 183 = 3 61 |
33 | 85 = 5 17 | 83 | 105 = 3 5 7 | 133 | 145 = 5 29 | 183 | 221 = 13 17 |
34 | 35 = 5 7 | 84 | 85 = 5 17 | 134 | 135 = 3³ 5 | 184 | 185 = 5 37 |
35 | 51 = 3 17 | 85 | 129 = 3 43 | 135 | 221 = 13 17 | 185 | 217 = 7 31 |
36 | 91 = 7 13 | 86 | 87 = 3 29 | 136 | 265 = 5 53 | 186 | 187 = 11 17 |
37 | 45 = 3² 5 | 87 | 91 = 7 13 | 137 | 148 = 2² 37 | 187 | 217 = 7 31 |
38 | 39 = 3 13 | 88 | 91 = 7 13 | 138 | 259 = 7 37 | 188 | 189 = 3³ 7 |
39 | 95 = 5 19 | 89 | 99 = 3² 11 | 139 | 161 = 7 23 | 189 | 235 = 5 47 |
40 | 91 = 7 13 | 90 | 91 = 7 13 | 140 | 141 = 3 47 | 190 | 231 = 3 7 11 |
41 | 105 = 3 5 7 | 91 | 115 = 5 23 | 141 | 355 = 5 71 | 191 | 217 = 7 31 |
42 | 205 = 5 41 | 92 | 93 = 3 31 | 142 | 143 = 11 13 | 192 | 217 = 7 31 |
43 | 77 = 7 11 | 93 | 301 = 7 43 | 143 | 213 = 3 71 | 193 | 276 = 2² 3 23 |
44 | 45 = 3² 5 | 94 | 95 = 5 19 | 144 | 145 = 5 29 | 194 | 195 = 3 5 13 |
45 | 76 = 2² 19 | 95 | 141 = 3 47 | 145 | 153 = 3² 17 | 195 | 259 = 7 37 |
46 | 133 = 7 19 | 96 | 133 = 7 19 | 146 | 147 = 3 7² | 196 | 205 = 5 41 |
47 | 65 = 5 13 | 97 | 105 = 3 5 7 | 147 | 169 = 13² | 197 | 231 = 3 7 11 |
48 | 49 = 7² | 98 | 99 = 3² 11 | 148 | 231 = 3 7 11 | 198 | 247 = 13 19 |
49 | 66 = 2 3 11 | 99 | 145 = 5 29 | 149 | 175 = 5² 7 | 199 | 225 = 3² 5² |
femtio | 51 = 3 17 | 100 | 153 = 3² 17 | 150 | 169 = 13² | 200 | 201 = 3 67 |
Fermat pseudosimples till bas 2 kallas Poulet-tal , efter den belgiske matematikern Paul Poulet [8] . Faktoriseringen av de sextioförsta Poolet-talen, inklusive de tretton Carmichael-talen (markerade med fet stil), finns i tabellen nedan.
Poole siffror | |||||||
---|---|---|---|---|---|---|---|
Poole 1 - 15 | Poole 16 - 30 | Poole 31 - 45 | Poole 46 - 60 | ||||
341 | 11 31 | 4681 | 31 151 | 15709 | 23 683 | 33153 | 3 43 257 |
561 | 3 11 17 | 5461 | 43 127 | 15841 | 7 31 73 | 34945 | 5 29 241 |
645 | 3 5 43 | 6601 | 7 23 41 | 16705 | 5 13 257 | 35333 | 89 397 |
1105 | 5 13 17 | 7957 | 73 109 | 18705 | 3 5 29 43 | 39865 | 5 7 17 67 |
1387 | 19 73 | 8321 | 53 157 | 18721 | 97 193 | 41041 | 7 11 13 41 |
1729 | 7 13 19 | 8481 | 3 11 257 | 19951 | 71 281 | 41665 | 5 13 641 |
1905 | 3 5 127 | 8911 | 7 19 67 | 23001 | 3 11 17 41 | 42799 | 127 337 |
2047 | 23 89 | 10261 | 31 331 | 23377 | 97 241 | 46657 | 13 37 97 |
2465 | 5 17 29 | 10585 | 5 29 73 | 25761 | 3 31 277 | 49141 | 157 313 |
2701 | 37 73 | 11305 | 5 7 17 19 | 29341 | 13 37 61 | 49981 | 151 331 |
2821 | 7 13 31 | 12801 | 3 17 251 | 30121 | 7 13 331 | 52633 | 7 73 103 |
3277 | 29 113 | 13741 | 7 13 151 | 30889 | 17 23 79 | 55245 | 3 5 29 127 |
4033 | 37 109 | 13747 | 59 233 | 31417 | 89 353 | 57421 | 7 13 631 |
4369 | 17 257 | 13981 | 11 31 41 | 31609 | 73 433 | 60701 | 101 601 |
4371 | 3 31 47 | 14491 | 43 337 | 31621 | 103 307 | 60787 | 89 683 |
Poole-talet, där alla divisorer d också delar talet 2 d − 2, kallas super Poole- talet . Det finns oändligt många Poulet-nummer som inte är super-Poulet-nummer [9] .
Fermats första pseudoprimer (upp till 10000) i bas a | ||
---|---|---|
a | Fermat pseudoprimer (upp till 10 000) | OEIS-sekvens (länk är extern) |
ett | 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 69, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, ( 100, … alla sammansatta tal) | A002808 |
2 | 341 561 645 1105 1387 1729 1905 2047 2465 2701 2821 3277 4033 4369 4371 4681 5461 6601 7957 83218 | A001567 |
3 | 91 121 286 671 703 949 1105 1541 1729 1891 2465 2665 2701 2821 3281 3367 3751 4961 5551 6601 401 | A005935 |
fyra | 15, 85, 91, 341, 435, 451, 561, 645, 703, 1105, 1247, 1271, 1387, 1581, 1695, 1729, 1891, 1905, 2047, 2071, 2465, 2701, 33.3 3367 3683 4033 4369 4371 4681 4795 4859 5461 5551 6601 6643 7957 8321 8481 8695 8911 9061 9131 9211 9195 | A020136 |
5 | 4, 124, 217, 561, 781, 1541, 1729, 1891, 2821, 4123, 5461, 5611, 5662, 5731, 6601, 7449, 7819, 819, 8113, 89 | A005936 |
6 | 35, 185, 217, 301, 481, 1105, 1111, 1261, 1333, 1729, 2465, 2701, 2821, 3421, 3565, 3589, 3923, 3, 3, 4, 3, 3, 4 | A005937 |
7 | 6, 25, 325, 561, 703, 817, 1105, 1825, 2101, 2353, 2465, 3277, 4525, 4825, 6697, 8321 | A005938 |
åtta | 9, 21, 45, 63, 65, 105, 117, 133, 153, 231, 273, 341, 481, 511, 561, 585, 645, 651, 861. 1417, 1541, 1649, 1661, 1729, 1785, 1905, 2047, 2169, 2465, 2501, 2701, 2821, 3145, 3171, 3201, 3277, 3605, 3641, 4005, 4033, 4097, 4369, 437, 4641. 4681, 4921, 5461, 5565, 5963, 6305, 6533, 6601, 6951, 7107, 7161, 7957, 8321, 8481. | A020137 |
9 | 4, 8, 28, 52, 91, 121, 205, 286, 364, 511, 532, 616, 671, 697, 703, 946, 949. 2501, 2665, 2701, 2806, 2821, 2926, 3052, 3281, 3367, 3751, 4376, 4636, 4961, 5356, 5551, 6364, 6601, 6643, 7081, 7381, 7913, 8401, 8695, 8744, 8866, 8911 | A020138 |
tio | 9, 33, 91, 99, 259, 451, 481, 561, 657, 703, 909, 1233, 1729, 2409, 2821, 2981, 3333. , 7777, 8149, 8401, 8911 | A005939 |
elva | 10, 15, 70, 133, 190, 259, 305, 481, 645, 703, 793, 1105, 1330, 1729, 2047, 2257. , 9730 | A020139 |
12 | 65, 91, 133, 143, 145, 247, 377, 385, 703, 1045, 1099, 1105, 1649, 1729, 1885. 5785, 6061, 6305, 6601, 8911, 9073 | A020140 |
13 | 4, 6, 12, 21, 85, 105, 231, 244, 276, 357, 427, 561, 1099, 1785, 1891, 2465. 9577, 9637 | A020141 |
fjorton | 15, 39, 65, 195, 481, 561, 781, 793, 841, 985, 1105, 1111, 1541, 1891, 2257. 7449, 7543, 7585, 8321, 9073 | A020142 |
femton | 14, 341, 742, 946, 1477, 1541, 1687, 1729, 1891, 1921, 2821, 3133, 3277, 4187, 6541, 6601, 7401, 7401, 0 | A020143 |
16 | 15, 51, 85, 91, 255, 341, 435, 451, 561, 595, 645, 703, 1105, 1247, 1261, 1271, 1285. , 2431, 2465, 2701, 2821, 3133, 3277, 3367, 3655, 3683, 4033, 4369, 4371, 4681, 4795, 4859, 5083, 5151, 5461, 5551, 6601, 6643, 7471, 7735, 7735, 7735 , 7735, 7735, 7735. 7957, 8119, 8227, 8245, 8321, 8481, 8695, 8749, 8911, 9061, 9131, 9211, 9605, 9105, | A020144 |
17 | 4, 8, 9, 16, 45, 91, 145, 261, 781, 1111, 1228, 1305, 1729, 1885, 2149, 2821, 3991. , 8481, 8911 | A020145 |
arton | 25, 49, 65, 85, 133, 221, 323, 325, 343, 425, 451, 637, 931, 1105, 1225, 1369, 1387. 3325, 4165, 4577, 4753, 5525, 5725, 5833, 5941, 6305, 6517, 6601, 7345, 8911, 9061 | A020146 |
19 | 6, 9, 15, 18, 45, 49, 153, 169, 343, 561, 637, 889, 905, 906, 1035, 1105, 1629, 1661. , 4033, 4681, 5461, 5466, 5713, 6223, 6541, 6601, 6697, 7957, 8145, 8281, 8401, 8869, 9211, 9997 | A020147 |
tjugo | 21, 57, 133, 231, 399, 561, 671, 861, 889, 1281, 1653, 1729, 1891, 2059, 2413, 2501. , 6817, 7999, 8421, 8911 | A020148 |
21 | 4, 10, 20, 55, 65, 85, 221, 703, 793, 1045, 1105, 1852, 2035, 2465, 3781, 4630, 5185. | A020149 |
22 | 21 69 91 105 161 169 345 483 485 645 805 1105 1183 1247 1261 1541 1649 1729 1891 2037 2041 2047 2437 2437 2821, 3241, 3605, 3801, 5551, 5565, 5963, 6019, 6601, 6693, 7081, 7107, 7267, 7665, 8119, 8365, 8421, 8911, 9453 | A020150 |
23 | 22, 33, 91, 154, 165, 169, 265, 341, 385, 451, 481, 553, 561, 638, 946, 1027. 2465, 2501, 2701, 2821, 2926, 3097, 3445, 4033, 4081, 4345, 4371, 4681, 5005, 5149, 6253, 6369, 6533, 6541, 7189, 7267, 7957, 8321, 8365, 8651, 8745, 8911, 8965, 9805 | A020151 |
24 | 25, 115, 175, 325, 553, 575, 805, 949, 1105, 1541, 1729, 1771, 1825, 1975, 2413, 2425. , 7189, 7471, 7501, 7813, 8725, 8911, 9085, 9361, 9809 | A020152 |
25 | 4, 6, 8, 12, 24, 28, 39, 66, 91, 124, 217, 232, 276, 403, 426, 451, 532, 561, 616, 703, 781, 6,84 1288, 1541, 1729, 1891, 2047. 5662, 5731, 5963, 6601, 7449, 7588, 7813, 8029, 8646, 8911, 9876, 9 | A020153 |
26 | 9, 15, 25, 27, 45, 75, 133, 135, 153, 175, 217, 225, 259, 425, 475, 561, 589, 675, 703. 3145, 3325, 3385, 3565, 3825, 4123, 4525, 4741, 4921, 5041, 5425, 6093, 6475, 6525, 6601, 60297, 81, 60297, 81, 81 | A020154 |
27 | 26, 65, 91, 121, 133, 247, 259, 286, 341, 365, 481, 671, 703, 949, 1001, 1105, 1541. 2993, 3146, 3281, 3367, 3605, 3751, 4033, 4745, 4921, 4961, 5299, 5461, 5551, 5611, 5621, 6305, 6533, 6601, 7381, 7585, 7957, 8227, 8321, 8401, 8911, 9139, 9709, 9809, 9841, 9881, 9919 | A020155 |
28 | 9, 27, 45, 87, 145, 261, 361, 529, 561, 703, 783, 785, 1105, 1305, 1413, 1431, 1885, 2041, 2413,1 , 5365, 7065, 8149, 8321, 8401, 9841 | A020156 |
29 | 4, 14, 15, 21, 28, 35, 52, 91, 105, 231, 268, 341, 364, 469, 481, 561, 651, 793, 871, 1105, 1729, 172, 176 2821, 3484, 3523, 4069, 4371, 4411, 5149, 5185, 5356, 5473, 5565, 5611, 6097, 6601. | A020157 |
trettio | 49, 91, 133, 217, 247, 341, 403, 469, 493, 589, 637, 703, 871, 899, 901, 931, 1273. , 3367, 3577, 4081, 4097, 4123, 5729, 6031, 6061, 6097, 6409, 6601, 6817, 7657, 8023, 8029, 8401, 8401, 8401 | A020158 |
För mer information om Fermats pseudoprimer till baserna 31 - 100, se artiklarna A020159 - A020228 i Encyclopedia of Integer Sequences [10] .
Nedan finns en tabell över alla baser b < n för vilka n är ett Fermat-pseudoprimtal (alla sammansatta tal är pseudoprimtal i bas 1, och för b > n skiftas lösningen helt enkelt med k * n , där k > 0) om den sammansatta nummer n anges inte i tabellen, då är det pseudoprime bara i bas 1, eller i baser som är jämförbara med 1 (mod n ), det vill säga antalet baser b är 1. Tabellen är sammanställd för n < 180 [11] .
Baser b för vilka n är pseudoprim | ||
---|---|---|
n | Baser b för vilka n är pseudoenkel Fermat(< n ) | Antal baser b (< n ) [12] |
9 | arton | 2 |
femton | 1, 4, 11, 14 | fyra |
21 | 1, 8, 13, 20 | fyra |
25 | 1, 7, 18, 24 | fyra |
27 | 1, 26 | 2 |
28 | 1, 9, 25 | 3 |
33 | 1, 10, 23, 32 | fyra |
35 | 1, 6, 29, 34 | fyra |
39 | 1, 14, 25, 38 | fyra |
45 | 1, 8, 17, 19, 26, 28, 37, 44 | åtta |
49 | 1, 18, 19, 30, 31, 48 | 6 |
51 | 1, 16, 35, 50 | fyra |
52 | 1, 9, 29 | 3 |
55 | 1, 21, 34, 54 | fyra |
57 | 1, 20, 37, 56 | fyra |
63 | 1, 8, 55, 62 | fyra |
65 | 1, 8, 12, 14, 18, 21, 27, 31, 34, 38, 44, 47, 51, 53, 57, 64 | 16 |
66 | 1, 25, 31, 37, 49 | 5 |
69 | 1, 22, 47, 68 | fyra |
70 | 1, 11, 51 | 3 |
75 | 1, 26, 49, 74 | fyra |
76 | 1, 45, 49 | 3 |
77 | 1, 34, 43, 76 | fyra |
81 | 1,80 | 2 |
85 | 1, 4, 13, 16, 18, 21, 33, 38, 47, 52, 64, 67, 69, 72, 81, 84 | 16 |
87 | 1, 28, 59, 86 | fyra |
91 | 1, 3, 4, 9, 10, 12, 16, 17, 22, 23, 25, 27, 29, 30, 36, 38, 40, 43, 48, 51, 53, 55, 61, 62, 64, 66, 68, 69, 74, 75, 79, 81, 82, 87, 88, 90 |
36 |
93 | 1, 32, 61, 92 | fyra |
95 | 1, 39, 56, 94 | fyra |
99 | 1, 10, 89, 98 | fyra |
105 | 1, 8, 13, 22, 29, 34, 41, 43, 62, 64, 71, 76, 83, 92, 97, 104 | 16 |
111 | 1, 38, 73, 110 | fyra |
112 | 1, 65, 81 | 3 |
115 | 1, 24, 91, 114 | fyra |
117 | 1, 8, 44, 53, 64, 73, 109, 116 | åtta |
119 | 1, 50, 69, 118 | fyra |
121 | 1, 3, 9, 27, 40, 81, 94, 112, 118, 120 | tio |
123 | 1, 40, 83, 122 | fyra |
124 | 1, 5, 25 | 3 |
125 | 1, 57, 68, 124 | fyra |
129 | 1, 44, 85, 128 | fyra |
130 | 1, 61, 81 | 3 |
133 | 1, 8, 11, 12, 18, 20, 26, 27, 30, 31, 37, 39, 45, 46, 50, 58, 64, 65, 68, 69, 75, 83, 87, 88, 94, 96, 102, 103, 106, 107, 113, 115, 121, 122, 125, 132 |
36 |
135 | 1, 26, 109, 134 | fyra |
141 | 1, 46, 95, 140 | fyra |
143 | 1, 12, 131, 142 | fyra |
145 | 1, 12, 17, 28, 41, 46, 57, 59, 86, 88, 99, 104, 117, 128, 133, 144 | 16 |
147 | 1, 50, 97, 146 | fyra |
148 | 1, 121, 137 | 3 |
153 | 1, 8, 19, 26, 35, 53, 55, 64, 89, 98, 100, 118, 127, 134, 145, 152 | 16 |
154 | 1, 23, 67 | 3 |
155 | 1, 61, 94, 154 | fyra |
159 | 1, 52, 107, 158 | fyra |
161 | 1, 22, 139, 160 | fyra |
165 | 1, 23, 32, 34, 43, 56, 67, 76, 89, 98, 109, 122, 131, 133, 142, 164 | 16 |
169 | 1, 19, 22, 23, 70, 80, 89, 99, 146, 147, 150, 168 | 12 |
171 | 1, 37, 134, 170 | fyra |
172 | 1, 49, 165 | 3 |
175 | 1, 24, 26, 51, 74, 76, 99, 101, 124, 149, 151, 174 | 12 |
176 | 1, 49, 81, 97, 113 | 5 |
177 | 1, 58, 119, 176 | fyra |
Det bör noteras att om p är primtal så är p 2 Fermats pseudoprim till bas b om och endast om p är ett Wieferich primtal till bas b . Till exempel är 1093 2 = 1 194 649 Fermats pseudoenkla bas 2.
Antalet baser b för n (för primtal n måste antalet baser b vara lika med n-1 , eftersom alla b uppfyller Fermats lilla teorem ):
1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, … (sekvens A063994 i OEIS )Den minsta basen b > 1 för vilken n är pseudoprime (eller prime):
2, 3, 2, 5, 2, 7, 2, 9, 8, 11, 2, 13, 2, 15, 4, 17, 2, 19, 2, 21, 8, 23, 2, 25, 7, 27, 26, 9, 2, 31, 2, 33, 10, 35, 6, 37, 2, 39, 14, 41, 2, 43, 2, 45, 8, 47, 2, 49, 18, 51, … (sekvens A105222 i OEIS ).Ett sammansatt tal n som uppfyller jämförelsen b n = b (mod n ) kallas en svag Fermat-pseudoprim till bas b (här behöver b inte vara coprime till n ) [13] . De minsta svaga pseudoprimerna till bas b är:
4, 341, 6, 4, 4, 6, 6, 4, 4, 6, 10, 4, 4, 14, 6, 4, 4, 6, 6, 4, 4, 6, 22, 4, 4, 9, 6, 4, 4, 6, 6, 4, 4, 6, 9, 4, 4, 38, 6, 4, 4, 6, 6, 4, 4, 6, 46, 4, 4, 10, … (sekvens A000790 i OEIS )Om det krävs att n > b , då:
4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 56, … (sekvens A239293 i OEIS )På grund av deras sällsynthet har sådana pseudoprimer viktiga praktiska tillämpningar. Till exempel kräver public-key kryptografiska algoritmer som RSA förmågan att snabbt hitta stora primtal [14] . Den vanliga algoritmen för att generera primtal är att generera slumpmässiga udda tal och testa dem för primitet . Men deterministiska primatitetstester är långsamma. Om vi är villiga att acceptera en godtyckligt liten sannolikhet att talet som hittas inte är primtal, utan pseudoprimtal, kan ett mycket snabbare och enklare Fermats test användas .