Teorin om klassfält studerar Abeliska förlängningar (ändliga Galois-förlängningar med en kommutativ Galois-grupp) av vissa typer av fält [1] [2] [3] .
Inom ramen för algebraisk talteori studerar TPK abelska förlängningar av fältet rationella tal [1] [2] , och inom ramen för teorin om p-adiska tal, abelianska förlängningar av fältet p-adiska tal .
Klassfältteorins uppgift är att för ett givet fält beskriva alla abelianska förlängningar [1] [2] [3] , och teorin ger denna beskrivning i termer av huvudfältet [2] . Dessutom studerar teorin om klassfält aritmetiken för abelska förlängningar av ett givet fält, nämligen lagarna för nedbrytning av primära ideal för detta fält i varje given förlängning och ömsesidighetslagarna [2] .
Teorin om klassfält av globala fält kallas den globala klassfältteorin, lokala fält - den lokala klassfältteorin [2] [3] .
![]() | |
---|---|
I bibliografiska kataloger |