De Moivres formel

Den aktuella versionen av sidan har ännu inte granskats av erfarna bidragsgivare och kan skilja sig väsentligt från versionen som granskades den 19 april 2021; verifiering kräver 1 redigering .

De Moivres formel för komplexa tal säger att

[ett]

för någon .

Historiskt sett bevisades De Moivres formel tidigare än Eulers formel :

följer dock omedelbart därav.

Applikation

En liknande formel är också tillämplig när man beräknar de n :te rötterna av ett komplext tal som inte är noll:

var .

Det följer av denna formel att de th rötterna av ett komplext tal som inte är noll alltid existerar, och deras antal är lika med . På det komplexa planet, som kan ses från samma formel, är alla dessa rötter hörn av en regelbunden n - gon inskriven i en cirkel med radie centrerad på noll.

När du från Moivre-formeln kan härleda värdena för trigonometriska funktioner för flera argument (till exempel sinus och cosinus för dubbla, trippel, etc. vinklar).

Historik

Upptäckt av den engelske matematikern Abraham de Moivre .

Se även

Anteckningar

  1. § 3. Att höja ett komplext tal till en potens och extrahera en rot från ett komplext tal . scask.ru . Hämtad: 27 mars 2022.