Halveringstiden för ett kvantmekaniskt system ( partikel , kärna , atom , energinivå, etc.) är den tid under vilken systemet sönderfaller med en sannolikhet på 1/2 [1] . Under en halveringstid minskar i genomsnitt antalet överlevande partiklar med hälften [1] [2] [3] [4] [5] [6] , liksom intensiteten av sönderfallsreaktionen [2] [5 ] [6] .
Halveringstiden kännetecknar tydligt sönderfallshastigheten för radioaktiva kärnor, tillsammans med medellivslängden och sannolikheten för sönderfall per tidsenhet (sönderfallskonstant), dessa storheter är relaterade till varandra genom ett enkelt entydigt samband [2] [3] [4] [5] [6] .
Halveringstiden är en konstant för en given radioaktiv kärna ( isotop ). För olika isotoper kan detta värde variera från tiotals yoktosekunder (10 −24 s) för väte-7 till mer än 10 24 år för tellur-128 , vilket många gånger överstiger universums ålder [4] [5] . Baserat på halveringstidens beständighet byggs en metod för radioisotopdatering [5] .
Begreppet halveringstid tillämpas både på elementarpartiklar som genomgår sönderfall och på radioaktiva kärnor [4] . Eftersom sönderfallshändelsen har en kvantprobabilistisk natur , om vi betraktar en strukturell enhet av materia (en partikel, en atom av en radioaktiv isotop), kan vi tala om halveringstiden som en tidsperiod efter vilken den genomsnittliga sannolikheten för sönderfallet av den aktuella partikeln kommer att vara lika med 1/2 [1] .
Om vi betraktar exponentiellt sönderfallande system av partiklar, så kommer halveringstiden att vara den tid under vilken i genomsnitt hälften av de radioaktiva kärnorna sönderfaller [1] [2] [3] [4] [5] [6] . Enligt lagen om radioaktivt sönderfall relateras antalet oavbrutna atomer vid ett ögonblick till det initiala (för närvarande ) antalet atomer genom relationen
var är avklingningskonstanten [7] .Per definition alltså var
Vidare, sedan den genomsnittliga livslängden , sedan [2] [3] [4] [5] [6]
det vill säga halveringstiden är cirka 30,7 % kortare än medellivslängden. Till exempel, för en fri neutron = 10,3 minuter, a = 14,9 minuter [5] .
Det bör inte antas att alla partiklar som tas i det första ögonblicket kommer att sönderfalla under två halveringstider. Eftersom varje halveringstid minskar antalet överlevande partiklar med hälften, kommer en fjärdedel av det initiala antalet partiklar att finnas kvar i tiden, en åttondel, och så vidare [1] [5] . Samtidigt, för varje specifik enskild partikel över tiden, kommer den förväntade genomsnittliga livslängden (respektive både sannolikheten för sönderfall och halveringstiden) inte att förändras - detta kontraintuitiva faktum är en konsekvens av sönderfallsfenomenets kvanta natur [ 1] .
Om ett system med en halveringstid kan förfalla genom flera kanaler, kan en partiell halveringstid bestämmas för var och en av dem . Låt sannolikheten för avklingning längs den i : te kanalen ( förgreningsfaktorn ) vara lika med . Då är den partiella halveringstiden för den i - :e kanalen lika med
Partiell har innebörden av den halveringstid som ett givet system skulle ha om alla sönderfallskanaler var "avstängda", förutom den i - :te. Sedan per definition , då för vilken förfallskanal som helst.
Halveringstiden för en viss isotop är ett konstant värde som inte beror på metoden för dess framställning, ämnets aggregationstillstånd, temperatur, tryck, kemisk sammansättning av föreningen där den ingår och praktiskt taget alla andra externa faktorer, med undantag för handlingen av direkt kärnväxelverkan till följd av till exempel en kollision med en högenergipartikel i acceleratorn [5] [6] .
I praktiken bestäms halveringstiden genom att mäta studieläkemedlets aktivitet med jämna mellanrum. Med tanke på att läkemedlets aktivitet är proportionell mot antalet atomer i det sönderfallande ämnet, och med hjälp av lagen om radioaktivt sönderfall , kan du beräkna halveringstiden för detta ämne [8] .
Halveringstidsvärden för olika radioaktiva isotoper:
Kemiskt element | Beteckning | Beställningsnummer (Z) | Massnummer (A) | Halva livet |
---|---|---|---|---|
Aktinium | AC | 89 | 227 | 22 år [9] [10] |
Americium | Am | 95 | 243 | 7,3⋅10 3 år [10] [11] |
Astat | På | 85 | 210 | 8,3 timmar [9] |
Beryllium | Vara | fyra | åtta | 8,2⋅10 -17 sekunder [11] |
Vismut | Bi | 83 | 208 | 3,68⋅10 5 år [11] [12] |
209 | 2⋅10 19 år [10] [13] | |||
210 | 3.04⋅10 6 år [12] [13] | |||
Berkelium | bk | 97 | 247 | 1,38⋅10 3 år [10] [11] |
Kol | C | 6 | fjorton | 5730 år [1] [13] |
Kadmium | CD | 48 | 113 | 9⋅10 15 år [14] |
Klor | Cl | 17 | 36 | 3⋅10 5 år [13] |
38 | 38 minuter [13] | |||
Curium | centimeter | 96 | 247 | 4⋅10 7 år [9] |
Kobolt | co | 27 | 60 | 5,27 år [13] [15] |
Cesium | Cs | 55 | 137 | 30,1 år [1] [15] |
Einsteinium | Es | 99 | 254 | 1,3 år [9] [10] |
Fluor | F | 9 | arton | 110 minuter [11] [15] |
Järn | Fe | 26 | 59 | 45 dagar [1] [13] |
Frankrike | Fr | 87 | 223 | 22 minuter [9] [10] |
Gallium | Ga | 31 | 68 | 68 minuter [11] |
Väte | H | ett | 3 | 12,3 år [13] [15] |
Jod | jag | 53 | 131 | 8 dagar [13] [15] |
Iridium | Ir | 77 | 192 | 74 dagar [13] |
Kalium | K | 19 | 40 | 1,25⋅10 9 år [1] [11] |
Molybden | Mo | 42 | 99 | 66 timmar [5] [11] |
Kväve | N | 7 | 13 | 10 minuter [13] |
Natrium | Na | elva | 22 | 2,6 år [13] [15] |
24 | 15 timmar [1] [13] [15] | |||
Neptunium | Np | 93 | 237 | 2.1⋅10 6 år [10] [11] |
Syre | O | åtta | femton | 124 sekunder [13] |
Fosfor | P | femton | 32 | 14,3 dagar [1] [13] |
Protaktinium | Pa | 91 | 231 | 3,3⋅10 4 år [11] [13] |
Polonium | Po | 84 | 210 | 138,4 dagar [9] [13] |
214 | 0,16 sekunder [11] | |||
Plutonium | Pu | 94 | 238 | 87,7 år [11] |
239 | 2.44⋅10 4 år [1] [13] | |||
242 | 3,3⋅10 5 år [9] | |||
Radium | Ra | 88 | 226 | 1,6⋅10 3 år [9] [11] [10] |
Rubidium | Rb | 37 | 82 | 76 sekunder [11] |
87 | 49,7⋅10 9 år [11] | |||
Radon | Rn | 86 | 222 | 3,83 dagar [9] [13] |
Svavel | S | 16 | 35 | 87 dagar [13] |
Samarium | sm | 62 | 147 | 1.07⋅10 11 år [11] [12] |
148 | 6.3⋅10 15 år [11] | |||
149 | > 2⋅10 15 år [11] [12] | |||
Strontium | Sr | 38 | 89 | 50,5 dagar [13] |
90 | 28,8 år [11] | |||
Teknetium | Tc | 43 | 99 | 2.1⋅10 5 år [9] [10] |
Tellur | Te | 52 | 128 | 2⋅10 24 år [11] |
Torium | Th | 90 | 232 | 1,4⋅10 10 år [9] [10] |
Uranus | U | 92 | 233 | 1.⋅10 5 år [13] |
234 | 2,5⋅10 5 år [13] | |||
235 | 7.1⋅10 8 år [1] [13] | |||
238 | 4,5⋅10 9 år [1] [9] [10] [13] | |||
Xenon | Xe | 54 | 133 | 5,3 dagar [13] [15] |
Yttrium | Y | 39 | 90 | 64 timmar [13] |
Om vi betraktar tillräckligt nära tider och , då antalet kärnor som sönderfallit under detta tidsintervall kan ungefär skrivas som .
Med dess hjälp är det lätt att uppskatta antalet uran-238 atomer , som har en halveringstid på år, som genomgår omvandling i en given mängd uran, till exempel i ett kilogram inom en sekund. Med tanke på att mängden av ett grundämne i gram, numeriskt lika med atomvikten, innehåller, som ni vet, 6,02⋅10 23 atomer, och sekunder på ett år, kan vi få det
Beräkningar leder till att i ett kilo uran sönderfaller tolv miljoner atomer på en sekund. Trots ett så stort antal är omvandlingshastigheten fortfarande försumbar. Faktum är att i en sekund av den tillgängliga mängden uran, dess andel lika med
Provet innehåller 10 g av plutoniumisotopen Pu-239 med en halveringstid på 24 400 år. Hur många plutoniumatomer sönderfaller varje sekund?
Eftersom den betraktade tiden (1 s) är mycket mindre än halveringstiden, kan vi tillämpa samma ungefärliga formel som i föregående exempel:
Substitution av numeriska värden ger
När den aktuella tidsperioden är jämförbar med halveringstiden, bör den exakta formeln användas
Det är lämpligt i alla fall, men under korta perioder kräver det beräkningar med mycket hög noggrannhet. Så för denna uppgift:
I alla observerade fall (förutom vissa isotoper som sönderfaller genom elektroninfångning ) var halveringstiden konstant (separata rapporter om en förändring i perioden orsakades av otillräcklig experimentell noggrannhet, i synnerhet ofullständig rening från högaktiva isotoper ). I detta avseende anses halveringstiden vara oförändrad. På grundval av detta byggs bestämningen av den absoluta geologiska åldern för bergarter, såväl som radiokolmetoden för att bestämma åldern på biologiska lämningar: genom att känna till koncentrationen av radioisotopen nu och i det förflutna är det möjligt att beräkna exakt hur mycket tiden har gått sedan dess [5] .
Antagandet om halveringstidens variabilitet används av kreationister , såväl som representanter för den så kallade. " alternativ vetenskap " för att motbevisa den vetenskapliga dateringen av stenar, resterna av levande varelser och historiska fynd, för att ytterligare motbevisa de vetenskapliga teorier som byggts med sådan datering. (Se t.ex. artiklarna Creationism , Scientific Creationism , Criticism of Evolutionism , Shroud of Turin ).
Variabiliteten av sönderfallskonstanten för elektroninfångning har observerats experimentellt, men den ligger inom en procentandel i hela intervallet av tryck och temperaturer som finns tillgängliga i laboratoriet. Halveringstiden i detta fall förändras på grund av något (ganska svagt) beroende av densiteten hos vågfunktionen hos orbitala elektroner i närheten av kärnan av tryck och temperatur. Signifikanta förändringar i sönderfallskonstanten observerades också för starkt joniserade atomer (således, i det begränsande fallet med en helt joniserad kärna, kan elektroninfångning endast ske när kärnan interagerar med fria plasmaelektroner; dessutom sönderfall, vilket är tillåtet för neutrala atomer, i vissa fall för starkt joniserade atomer kan förbjudas kinematiskt). Alla dessa alternativ för att ändra sönderfallskonstanterna kan uppenbarligen inte användas för att "bestrida" radiokronologisk datering, eftersom själva felet i den radiokronometriska metoden för de flesta isotopkronometrar är mer än en procent, och högjoniserade atomer i naturliga objekt på jorden inte kan existerar hur länge som helst..
Sökandet efter möjliga variationer i halveringstiderna för radioaktiva isotoper, både för närvarande och över miljarder år, är intressant i samband med hypotesen om variationer i värdena för fundamentala konstanter i fysiken ( finstrukturkonstant , Fermi-konstant , etc.). Noggranna mätningar har dock ännu inte gett resultat – inga förändringar i halveringstider har hittats inom det experimentella felet. Således visades det att under 4,6 miljarder år förändrades α-sönderfallskonstanten för samarium-147 med högst 0,75 %, och för β-sönderfallet av rhenium-187 överstiger inte förändringen under samma tid 0,5 % [16] ; i båda fallen överensstämmer resultaten med inga sådana förändringar alls.
Ordböcker och uppslagsverk |
---|