Ordlista för allmän topologi

Denna ordlista ger definitioner av de viktigaste termerna som används inom allmän topologi . Referenser i ordlistan är i kursiv stil .

En

Antidiskret topologi Topologi på rymden, där endast två uppsättningar är öppna: själva rymdenoch den tomma uppsättningen.

B

Topologibas En uppsättning öppna uppsättningar så att alla öppna uppsättningar är föreningen av uppsättningar i basen.

I

Topologisk rymdvikt Minsta kapacitet för alla baser i utrymmet. Verkligen komplett utrymme Ett utrymme som är homeomorft till ett slutet underrum med någon kraft från den verkliga linjen. Interiör Uppsättningen av alla inre punkter i uppsättningen . Den största genom inkludering öppna delmängd av en given uppsättning. Inre punkt i en uppsättning En punkt som ingår i den givna uppsättningen tillsammans med en del av dess grannskap . Inskriven täckning Ett omslag är inskrivet i ett omslag om varje uppsättning av ingår i någon uppsättning av Helt frånkopplat utrymme Ett utrymme där ingen delmängd som innehåller mer än en punkt är ansluten . Överallt tät uppsättning Ett set vars stängning sammanfaller med hela utrymmet. urgröpt grannskap Grannskapet till en given punkt från vilken denna punkt själv har tagits bort.

G

Homeomorfism En bijektion sådan att och är kontinuerliga . Homeomorfa utrymmen Utrymmen mellan vilka det finns en homeomorfism . Homotopi För en kontinuerlig mappning , en kontinuerlig mappning , sådan att för någon . Notationen används ofta , särskilt . Homotopiska kartläggningar Mappningar kallas homotopa eller om det finns en homotopi sådan att och . Homotopi ekvivalens av topologiska utrymmen Topologiska utrymmen och är homotopiskt ekvivalenta om det finns ett par kontinuerliga mappningar och sådana att och , Här betecknar homotopi ekvivalens av mappningar , det vill säga ekvivalens upp till homotopi . Det sägs också att och har samma homotopi typ . Homotopi invariant En egenskap hos ett utrymme som är bevarat under homotopi ekvivalens av topologiska utrymmen . Det vill säga, om två utrymmen är homotopiskt ekvivalenta, så har de samma egenskap. Till exempel anslutning , fundamental grupp , Euler-karaktäristik är homotopi-invarianter. Homotopisk typ Homotopiekvivalensklassen av topologiska utrymmen , det vill säga homotopiekvivalenta utrymmen kallas utrymmen av samma homotopityp. Gränsen 1.   Relativ gräns . 2. Samma som kanten på grenröret .

D

dörrutrymme Ett utrymme där varje delmängd antingen är öppen eller stängd. Kolon Topologiskt utrymme som består av två punkter; Det finns tre alternativ för att specificera topologin - en diskret topologi bildar ett enkelt kolon , en antidiskret bildar  ett klibbigt kolon , och en topologi med en öppen uppsättning av en punkt bildar ett anslutet kolon . Deformation dras tillbaka En delmängd av ett topologiskt utrymme som har egenskapen att det finns en homotopi av identitetsmappingen av utrymmet till någon mappning , under vilken alla punkter i mängden förblir fixerade . Diskret topologi En topologi där varje uppsättning är öppen . diskret set En uppsättning vars punkt är isolerad .

W

stängt set En uppsättning som är komplementet till en öppen . Stängd display En mappning under vilken bilden av en sluten uppsättning stängs. stängning Den minsta slutna uppsättningen som innehåller det givna.

Och

Inducerad topologi Topologi på en delmängd av det topologiska rummet, där öppna uppsättningar anses vara skärningspunkterna mellan öppna uppsättningar av det omgivande rummet med . Isolerat börvärde En punkt kallas isolerad för en uppsättning av ett topologiskt utrymme om det finns en grannskap sådan att .

K

Kardinal invariant Topologisk invariant , uttryckt som ett kardinaltal . Baer kategori En egenskap hos ett topologiskt utrymme som har ett av två värden; den första Baire-kategorin inkluderar utrymmen som tillåter en räknebar täckning av ingenstans täta delmängder, de andra utrymmena tillhör den andra Baire-kategorin. Kompaktering Komprimeringen av ett utrymme är ett par , där är ett kompakt utrymme, är en homeomorf inbäddning av ett utrymme i ett utrymme , och är överallt tätt i Även själva utrymmet kallas en komprimering . Kompakt display Kartläggning av topologiska utrymmen så att den omvända bilden av varje punkt är kompakt . kompakt utrymme Ett topologiskt utrymme där varje täckning av öppna mängder innehåller ett ändligt undertäcke . Punktanslutningskomponent Den maximala anslutna uppsättningen som innehåller denna punkt. Kontinuum Ansluten kompakt Hausdorff topologiska utrymme. Kon över topologiskt utrymme För ett utrymme (kallat konens bas ), utrymmet som erhålls från produkten genom att dra ihop underrummet till en enda punkt, kallad konens vertex .

L

Lindelof utrymme Ett topologiskt utrymme där varje täckning av öppna uppsättningar innehåller ett räknebart undertäcke. väganslutet utrymme Ett utrymme där vilket par av punkter som helst kan kopplas samman med en kurva. Lokalt kompakt utrymme Ett utrymme där vilken punkt som helst har ett kompakt område . Lokalt ändlig familj av delmängder En familj av delmängder av ett topologiskt utrymme så att varje punkt i detta utrymme har en stadsdel som skär endast ett ändligt antal element i denna familj. Lokalt anslutet utrymme Ett utrymme där vilken punkt som helst har en ansluten stadsdel . Lokalt sammandragbart utrymme Ett utrymme där vilken punkt som helst har ett sammandragbart område . Lokal homeomorfism En kartläggning av topologiska utrymmen, så att det för varje punkt finns en stadsdel som kartläggs till på ett homeomorft sätt. Ibland ingår ett krav automatiskt i definitionen av en lokal homeomorfism och dessutom antas kartläggningen vara öppen.

M

massiv uppsättning En delmängd av ett topologiskt utrymme som är skärningspunkten för ett räknebart antal öppna täta delmängder . Om varje massiv uppsättning är tät i , är det ett Baire-utrymme . Utrymmet kan mätas med hela måttet Ett utrymme homeomorft till ett komplett metriskt utrymme . Metriserbart utrymme Ett utrymme homeomorft till ett metriskt utrymme . Grenrör Hausdorff topologiska utrymme lokalt homeomorft till euklidiskt utrymme . Flerkopplat område En region av ett vägkopplat rum vars grundläggande grupp inte är trivial. Uppsättningen av den andra Baer-kategorin Alla set som inte är en uppsättning av den första Baer-kategorin . Uppsättningen av den första Baer-kategorin En uppsättning som kan representeras som en räknebar förening av ingenstans täta uppsättningar. Uppsättning av typ En uppsättning som kan representeras som en räknebar förening av slutna uppsättningar. Uppsättning av typ En uppsättning som kan representeras som en räknebar skärningspunkt av öppna uppsättningar.

H

beläggning Kartläggning av väg-anslutna utrymmen , under vilka någon punkt har en grannskap , för vilken det finns en homeomorphism , där är ett diskret utrymme , för vilket, under villkoret , betecknar den naturliga projektionen, då . ärftlig egendom En egenskap hos ett topologiskt utrymme så att om ett utrymme har denna egenskap, så har vilket som helst av dess underrum denna egenskap. Till exempel: mätbarhet och Hausdorffness . Om något delrum av ett utrymme har egenskapen , så sägs det att det har egenskapen ärftligt . Till exempel sägs ett topologiskt rum vara ärftligt normalt, ärftligt Lindelöf, ärftligt separerbart. kontinuerlig visning En mappning under vilken den omvända bilden av en öppen uppsättning är öppen. Ingenstans tät uppsättning En uppsättning vars förslutning inte innehåller öppna uppsättningar (förslutningen har en tom insida). normalt utrymme Ett topologiskt utrymme där enpunktsuppsättningar är stängda och två valfria slutna disjunkta uppsättningar har disjunkta grannskap .

Åh

Område En öppen ansluten delmängd av ett topologiskt utrymme . Helt enkelt uppkopplat utrymme Ett sammankopplat utrymme , varje kartläggning av en cirkel som är homotopisk till en konstant kartläggning. Grannskap Ett öppet kvarter eller en uppsättning som innehåller ett öppet kvarter . öppet kvarter För en punkt eller mängd, den öppna mängden som innehåller den givna punkten eller givna mängden. öppet set En uppsättning, vars varje element ingår i det tillsammans med något grannskap, ett begrepp som används i definitionen av ett topologiskt utrymme . öppen display En mappning under vilken bilden av en öppen uppsättning är öppen . Öppet-stängt set Ett set som är både öppet och stängt . Öppen-stängd kartläggning En kartläggning som är både öppen och stängd . Relativ gräns Skärningen av förslutningen av en delmängd av ett topologiskt utrymme med förslutningen av dess komplement. Gränsen för en mängd betecknas vanligtvis med . Relativ topologi Samma som inducerad topologi . Relativt kompakt set En delmängd av ett topologiskt utrymme vars stängning är kompakt. En sådan uppsättning kallas även precompact .

P

Par utrymmen Ett ordnat par där är ett topologiskt rum och är ett delrum (med delrumstopologin ). Paracompact utrymme Ett topologiskt utrymme i vilket vilket öppet lock som helst kan inskrivas med ett lokalt ändligt öppet lock (det vill säga så att man för varje punkt kan hitta en stadsdel som skär ett ändligt antal element i detta lock). Topologisk rymddensitet Minsta kardinalitet för överallt täta delmängder av ett utrymme. tät uppsättning En uppsättning i ett topologiskt utrymme som har en icke-tom skärningspunkt med valfri omgivning av en godtycklig punkt . Hemlig För ett omslag är undertäcket , där if i sig är ett omslag. delutrymme En delmängd av ett topologiskt utrymme utrustat med en inducerad topologi . Beläggning För en delmängd eller ett utrymme är detta dess representation som en förening av mängder , , mer exakt, det är en uppsättning mängder , så att . Oftast övervägs öppna lock, det vill säga de antar att alla är öppna uppsättningar. Tjeckiska komplett utrymme Ett utrymme kallas Cech komplett om det finns en kompaktering av utrymmet , så att det är en uppsättning typ i utrymmet . Beställningstopologi Topologi på en godtyckligt ordnad uppsättning , introducerad av en förbas av uppsättningar av formen och där går igenom alla element . prebas En familj av öppna delmängder av ett topologiskt utrymme så att mängden av alla mängder som är skärningspunkten för ett ändligt antal element bildar en bas . gränspunkt För en delmängd av ett topologiskt utrymme , en punkt sådan att det i någon av dess punkterade grannskap c finns minst en punkt från . Härledd uppsättning Uppsättningen av alla gränspunkter . Enkel kolon Ett topologiskt utrymme med två punkter där båda enpunktsuppsättningarna är öppna. Direkt Aleksandrova Det topologiska rummet över den kartesiska produkten av en välordnad mängd och ett reellt halvintervall med ordningstopologin under den lexikografiska ordningen är ett normalt Hausdorff icke -metriserbart rum, ett viktigt motexempel i många topologiska resonemang. Straight Suslin En hypotetisk (dess existens är oberoende av ZFC ) komplett linjärt ordnad tät uppsättning som har vissa egenskaper hos den vanliga linjen, men som inte är isomorf till den. Pseudokaraktär av ett topologiskt utrymme Högsta höjden av pseudokaraktärer i ett topologiskt utrymme på alla punkter. Pseudokaraktär av ett topologiskt utrymme vid en punkt Minsta kardinalitet för alla familjer i grannskap i en punkt som skär varandra vid en punkt.

R

vanligt utrymme Ett topologiskt utrymme där enpunktsuppsättningar är stängda och för alla slutna uppsättningar och en punkt som inte finns i den existerar deras icke-korsande grannskap . Dra tillbaka En tillbakadragning av ett topologiskt utrymme  är ett underrum till detta utrymme för vilket det finns en indragning på . indragning Retraktion är en kontinuerlig kartläggning från ett topologiskt utrymme till ett delrum av detta utrymme, identiskt med .

C

Ansluten kolon Ett topologiskt tvåpunktsutrymme där endast en av enpunktsuppsättningarna är öppen. uppkopplat utrymme Ett utrymme som inte kan delas upp i två icke-tomma icke-korsande slutna uppsättningar. avskiljbart utrymme Ett topologiskt utrymme där det finns en räknebar överallt tät uppsättning . Nätverksvikt för topologiskt utrymme Minsta kapacitet för alla nätverk i rymden. Netto Ett nätverk av ett topologiskt utrymme är en familj av delmängder av utrymmet , så att det för vilken punkt som helst och alla dess grannskap existerar , så att . Klumpad kolon Antidiskret topologiskt utrymme med två punkter. Topologiska rymdspridning Det högsta av kardinaliteter för alla diskreta underrum. kontrakterat utrymme Ett utrymme som homotopiskt motsvarar en punkt. Summan av topologiska utrymmen Summan av en familj av topologiska utrymmen är den osammanhängande föreningen av dessa topologiska utrymmen som mängder med topologin som består av alla uppsättningar av formen där var och en är öppen i . Utsedda .

T

Det topologiska rummets täthet Toppen av täthet i ett topologiskt utrymme på alla punkter. Topologisk rymdtäthet vid en punkt Tätheten i ett topologiskt utrymme vid en punkt är den minsta kardinal , för vilken om , då finns det högst kardinalitet , sådan att . Tikhonov utrymme Ett topologiskt utrymme där enpunktsmängder är stängda och för varje punkt och varje sluten mängd som inte innehåller en punkt finns det en kontinuerlig reell funktion som är lika på mängden och vid punkten . Topologisk invariant En egenskap hos ett utrymme som är bevarat under en homeomorfism . Det vill säga, om två utrymmen är homeomorfa, så har de samma invarianta egenskap. Till exempel är topologiska invarianter: kompakthet , samband , fundamental grupp , Euler-karaktäristik . Topologiskt injektiv kartläggning En kontinuerlig karta som realiserar en homeomorfism mellan definitionsdomänen och dess fullständiga bild. Topologiskt utrymme En uppsättning med en given topologi , det vill säga det bestäms vilken av dess delmängder som är öppna . Topologi En familj av delmängder av en mängd som innehåller en godtycklig förening och en ändlig skärning av dess element, såväl som den tomma mängden och sig själv . Elementen i en familj kallas öppna uppsättningar . Topologin kan också introduceras genom basen , som en familj som består av alla godtyckliga sammanslagningar av basens element. Topologi för kompakt konvergens En topologi som ges på en uppsättning av kontinuerliga reella funktioner, definierade av en familj av prenormer , kallas topologin för kompakt konvergens. Topologi för punktvis konvergens En topologi definierad på en uppsättning kontinuerliga funktioner från ett topologiskt utrymme till ett topologiskt utrymme , vars bas är alla uppsättningar av formen där - pekar från - öppna uppsättningar från , kallas topologin för punktvis konvergens. En uppsättning med en sådan topologi betecknas med . Topologi för enhetlig konvergens Låt en norm definieras på ett vektorrum av kontinuerliga funktioner på ett kompakt topologiskt utrymme . Topologin som genereras av ett sådant mått kallas topologin för enhetlig konvergens. Scott topologi En topologi över en komplett delvis ordnad uppsättning , där övre uppsättningar anses vara öppnasom är oåtkomliga för direkta anslutningar. Ansamlingspunkt Samma som gränspunkt . Full ackumuleringspunkt För en uppsättning , en punkt i det topologiska utrymmet så att skärningen med vilket grannskap som helst har samma kardinalitet som hela uppsättningen . beröringspunkt För en uppsättning , en punkt, vars område innehåller minst en punkt från . Uppsättningen av alla beröringspunkter sammanfaller med stängningen . Trivial topologi Samma som antidiskret topologi

Wu

Universell homeomorfism Täta Kontinuerlig bijektion .

F

Faktor utrymme Topologiskt utrymme på en uppsättning ekvivalensklasser: För ett topologiskt rum och en ekvivalensrelation introduceras topologi på en kvotmängd genom att definiera öppna mängder som familjen av alla mängder vars inversa bild är öppen i kvotmappningen (associerar ett element med dess ekvivalensklass ). Grundläggande grannskapssystem Det grundläggande systemet av grannskap av en punkt är en familj av grannskap av punkten , så att det för varje grannskap av punkten existerar , så att .

X

Karaktär av ett topologiskt utrymme Toppen av karaktärer i ett topologiskt utrymme på alla punkter. Karaktär av ett topologiskt utrymme vid en punkt Minsta kardinalitet för alla grundläggande system av stadsdelar av denna punkt. Hausdorff utrymme Ett topologiskt utrymme där två olika punkter har icke-korsande stadsdelar .

C

Cylinder över topologiskt utrymme För ett utrymme , ett utrymme konstruerat som en produkt av . display cylinder För mappning , ett kvotutrymme konstruerat från summan och genom att identifiera en punkt med en punkt för alla .

H

Lindelöf nummer av ett topologiskt rum Den minsta kardinalen är sådan att en undercover kan extraheras från vilket öppet lock som helst, med kardinalitet som mest . Suslin-talet för ett topologiskt utrymme Kardinalitetsöverhögheten för familjer av icke-korsande icke-tomma öppna uppsättningar.

E

Topologisk rymdutbredning Det högsta av kardinaliteter för alla slutna diskreta delmängder.

Litteratur

  • Bourbaki, N. Element av matematik. Allmän topologi. Grundläggande strukturer. — M .: Nauka, 1968.
  • Aleksandrov, PS Introduktion till mängdlära och allmän topologi. — M .: GIITL, 1948.
  • Kelly, J.L. Allmän topologi. — M .: Nauka, 1968.
  • Viro, O. Ya., Ivanov, O. A., Kharlamov, V. M., Netsvetaev, N. Yu. Problemlärobok om topologi .
  • Engelking, R. Allmän topologi. — M .: Mir , 1986. — 752 sid.