BGM-109 Tomahawk | |
---|---|
| |
Sorts | långdistans kryssningsmissil |
Status | i tjänst |
Utvecklaren | Allmän dynamik |
År av utveckling | 1972-1980 |
Start av testning | mars 1980—1983 |
Adoption | mars 1983 |
Tillverkare |
General Dynamics (ursprungligen) Raytheon / McDonnell Douglas |
Tillverkade enheter | 7302 (produktion pågår) [1] [ref. ett] |
Enhetskostnad | Tactical Tomahawk: 1,87 miljoner dollar (2017) [2] (Block IV) |
År av verksamhet | 1983 - nutid tid |
Stora operatörer |
United States Navy Royal Spanish Navy |
basmodell | BGM-109A |
Ändringar |
BGM-109A/…/F RGM/UGM-109A/…/E/H BGM-109G AGM-109C/H/I/J/K/L |
↓Alla specifikationer | |
Mediafiler på Wikimedia Commons |
"Tomahawk" [sn. 2] ( eng. Tomahawk - enligt Natos kodifiering SS-66 ['tɒmə‚hɔ: k] orig. pron. " Tomahawk "; efter namnet på den nordamerikanska indianstridsyxan med samma namn ) - en familj av amerikanska multi-purpose high-precision subsonic cruise missiles (CR) stora intervall av strategiska och taktiska syften för undervattens-, yt-, land- och flygbaser [3] . Den flyger på extremt låga höjder med omslutande terräng. Den är i tjänst med fartyg och ubåtar från den amerikanska flottan , har använts i alla betydande militära konflikter som involverar USA sedan dess antagande 1983. Den beräknade kostnaden för raketen 2014 var 1,45 [4] miljoner dollar.
"Tomahawk" är ett funktionellt sätt att lösa ett brett spektrum av stridsuppdrag, och istället för en standardstridsspets, nukleär eller konventionell, kan missilen fungera som en bärare av klustervapen för att förstöra grupputspridda mål (till exempel flygplan på ett flygfält , parkeringsutrustning eller ett tältläger). Dessutom ska du vara utrustad med spaningsutrustning och utföra funktionerna hos ett obemannat spaningsflygplan för att fotografera och filma terrängen, eller omedelbart leverera eventuell nyttolast (ammunition, utrustning) till ett avstånd med fallskärmslandning för avancerade styrkor i situationer där leveransen av last med bemannade flygplansanordningar är omöjligt eller problematiskt (väder- och klimatförhållanden, motstånd mot fiendens luftförsvarssystem , etc.). Flygräckvidden ökas på två sätt, för det första genom att minska flyglastens massa, och för det andra genom att öka flyghöjden för raketen på den marscherande delen av banan (innan man går in i zonen för aktivt motstånd från fiendens luftförsvar system) [5] [6] .
Efter andra världskriget genomfördes deras utvecklingsprogram för kryssningsmissiler med varierande framgång i Sovjetunionen och i USA . Medan man var i USA, med antagandet av ballistiska missiler från Polaris -ubåtar och landbaserade interkontinentala ballistiska missiler Atlas , Titan och silobaserade Minuteman , inskränktes projekten för utveckling av strategiska kryssningsmissiler för en ny generations flotta, som ett resultat som skapade en lucka i segmentet av operativa-taktiska vapen i flottan.
I Sovjetunionen fortsatte dessa projekt och uppnådde imponerande resultat (de sovjetiska motsvarigheterna var antiskeppsmissilerna Termit-M , Metel och Basalt ) [7] . Detta ledde i sin tur till att USA 1972, imponerad av de sovjetiska framgångarna, återupptog programmen för att utveckla sin egen CD.
Samtidigt, på grund av de vetenskapliga och tekniska framstegen inom området för elektronik och aerodynamik, var projekten för den nya amerikanska CD:n mycket mindre i storlek och vikt än deras föregångare i slutet av 1950-talet och början av 1960 -talet [ 8] .
1971 inledde ledningen för den amerikanska flottan ett arbete för att studera möjligheten att skapa en strategisk kryssningsmissil med en undervattensuppskjutning. I den inledande fasen av arbetet övervägdes två alternativ för CR:
Den 2 juni 1972 valdes en lättare version för torpedrör och i november samma år utfärdades kontrakt till industrin för utveckling av SLCM ( eng. Submarine-Launched Cruise Missile ), en kryssningsmissil för ubåtar . Senare, från officerarna i flottan som övervakade projektet, fick hon sitt verbala namn "Tomahawk".
I januari 1974 valdes de två mest lovande projekten ut för att delta i konkurrenskraftiga demonstrationslanseringar, och 1975 tilldelades projekten av General Dynamics och Ling-Temco-Vought beteckningarna ZBGM-109A respektive ZBGM-110A (prefix "Z" " i beteckningen finns status, och i USA användes DoD- beteckningssystem för att beteckna system som finns "på papper", det vill säga i ett tidigt utvecklingsstadium). Medan General Dynamics koncentrerade sig på hydrodynamiska testuppskjutningar av missilen från en ubåt för att öva sekvensen av missilens utträde från djupet till vattenytan (i detta skede genomfördes en "torr" uppskjutning, när missilen lämnar lanseringssilo, tryckt upp av tryckluft , och åtta "våta" uppskjutningar med förfyllning av gruvan med vatten), har "Lyn-Temko-Vote" genomfört liknande tester i förväg och har redan påbörjat arbetet med att integrera motorn med raketkropp och förbättra de aerodynamiska egenskaperna hos deras prototyp [9] .
I februari 1976 slutade det första försöket att lansera en prototyp YBGM-110A (prefix "Y" i beteckningen) från ett torpedrör (TA) utan framgång på grund av ett fel på TA. Det andra försöket lyckades inte på grund av att vingkonsolerna inte röjdes. I mars 1976, med tanke på två felfria lanseringar av YBGM-109A-prototypen och dess mindre riskfyllda design, tillkännagav den amerikanska flottan BGM-109- missilen som vinnare av SLCM- programtävlingen , och arbetet med BGM-110- projektet avbröts [10 ] .
Under samma period beslutade marinen att SLCM skulle adopteras av ytfartyg, så betydelsen av akronymen SLCM ändrades till engelska. The Sea-Launched Cruise Missile är en sjöuppskjuten kryssningsmissil (SLCM). Flygtester av YBGM-109A , inklusive det TERCOM relief-baserade korrigeringssystemet ( Tercom , English Terrain Contour Matching , som i sin tur är en modifierad version av liknande flygplansnavigeringssystem), [5] fortsatte under ett antal år. Utarbetandet av tredimensionella kartor över området för mjukvara och hårdvara för missilnavigeringsutrustning utfördes av försvarsministeriets militära kartografiska byrå [11] . TERCOM-systemet förser missilen med en flygning under radarhorisonten, vilket gör att den kan flyga på ultralåg höjd, precis ovanför trädtopparna eller byggnadernas tak, vilket komplicerar fiendens uppgift med sin sicksackflygbana [12] . För att ytterligare öka träffsäkerheten kompletterades reliefmätningssystemet med en digital områdeskorrelator för mjukvaruvisning ( digital scene-matching area correlator ), för att, enligt utvecklarna, träffa med en noggrannhet av en postadress och träffa målet "genom ytterdörren." [13]
Sedan 1976 övervakades arbetsprogrammet för flyget Tomahawk (TALCM) gemensamt av marinen och flygvapnet, som också gick med i programmet för att utveckla sin egen luftuppskjutna kryssningsmissil ( eng. Air-Launched Cruise Missile ) med ett öga att utrusta den med strategiska bombplan. General Dynamics huvudkonkurrent i luft-till-yta-klassen var Boeing med sin AGM-86 ALCM , den mest intensiva testfasen föll på vår-sommaren och varade till slutet av 1976 (vilket är okaraktäristiskt för amerikanska missilvapenprojekt , som regel ökar inte intensifieringen av uppskjutningar under det första året, utan när kontrolltester närmar sig). Gemensamma tester med AGM-86A ägde rum under US Strategic Air Command -programmet . Sedan 1976 erkändes landversionen av Tomahawk (GLCM) som att uppfylla kraven från flygvapnet [14] .
I januari 1977 initierade Jimmy Carter -administrationen ett program kallat JCMP ( Joint Cruise Missile Project ) , som styrde flygvapnet och flottan att utveckla sina kryssningsmissiler på en gemensam teknologibas. En av konsekvenserna av implementeringen av JCMP- programmet var att endast en typ av marschframdrivningssystem ( Williams F107 turbofan av AGM-86 missiler ) och TERCOM terrängkorrigeringssystem ( McDonnell Douglas AN / DPW-23 av BGM-109 missiler ) fått vidareutveckling. En annan konsekvens var upphörandet av arbetet med den grundläggande modifieringen av kryssningsmissilen AGM-86A , nästan klar för produktion, och genomförandet av konkurrenskraftiga flygtester för rollen som den viktigaste luftuppskjutna kryssningsmissilen mellan den utökade versionen av AGM- 86 med en räckvidd ökad till 2400 km, betecknad som ERV ALCM ( eng . . Extended Range Vehicle , blev senare AGM-86B ) och AGM-109 (modifieringar av YBGM-109A luftburet). Efter flygtester utförda mellan juli 1979 och februari 1980, förklarades AGM-86B som vinnare av tävlingen, och utvecklingen av den luftburna AGM-109 stoppades [15] .
Den marina versionen av BGM-109 fortsatte att utvecklas under denna tid. I mars 1980 ägde det första ytflygtestet av seriemissilen BGM-109A Tomahawk rum från USS Merrill (DD-976) Spruence-klass jagare ( eng. USS Merrill (DD-976) ), och i juni samma sak . år en framgångsrik lanseringsserie "Tomahawk" från ubåten USS Guitarro (SSN-665) av typen Stegen . Det var världens första uppskjutning av en strategisk kryssningsmissil från en ubåt. För att beväpna ytfartyg med Tomahawk, var missilen tvungen att paras ihop med andra stridstillgångar i skeppet, [14] detta krävde ett vapenkontrollsystem ombord liknande det som redan finns på fartyg utrustade med Harpoon-missiler [16] .
Den uppskattade kostnaden för en raket vid utvecklings- och teststadiet fluktuerade i en eller annan riktning från en halv miljon dollar, beroende på ordervolymen: 560,5 tusen dollar (1973), 443 tusen dollar (1976), 689 tusen dollar (1977) [17] .
Kostnaden för en lansering av Tomahawk-CD:n i mars 2011 var cirka 1,5 miljoner US-dollar [18] .
Flygtester av Tomahawk SLCM fortsatte i sex år, kontrolltester i tre år, under vilken tid mer än 100 uppskjutningar gjordes, som ett resultat, i mars 1983, förklarades missilen operativ beredskap och rekommendationer utfärdades för antagande.
Sedan 1976 har alla punkter i FoU-programmet genomförts i förtid. Det initiala testprogrammet förutsåg 101 uppskjutningar av missiler utrustade med Harpoon anti - ship missil launcher och TERCOM flygplansnavigeringssystem från början av 1977 till slutet av 1979 (varav 53 uppskjutningar var för teknisk bedömning av flygprestanda, 10 uppskjutningar av missiler med en kärnstridsspets under programmet för energiforskningsförvaltningen och utveckling , 38 uppskjutningar för att bedöma stridsförmåga i olika inledande taktiska situationer). [19] Experimentella uppskjutningar för att bedöma synligheten från marken av siluetten av en flygande missil på ett visuellt och instrumentellt sätt, såväl som de termiska spår den lämnar (med hjälp av speciell infraröd fixeringsutrustning) utfördes på White Sands träningsplats . Dessutom inkluderade testprogrammet testuppskjutningar vid Hill Air Force Base i Utah . Kontrollmätningar av det effektiva reflekterande området för de massdimensionella modellerna av LTV- och General Dynamics -missiler togs i installationen för att bestämma radarsektionerna av flygplan på Holloman -flygbasen (båda flygbaserna är belägna i delstaten New Mexico ). Stabiliteten av ombordelektronik och andra system i raketen mot effekterna av elektromagnetisk strålning från en kärnvapenexplosion mättes vid laboratorierna hos IRT-företaget i San Diego , Kalifornien [20] .
Trots intensiteten och den höga produktiviteten i arbetet i det inledande skedet (under testuppskjutningar 1976 visade styrsystemet resultat tre gånger bättre än förväntat, missilflygningar på ultralåga höjder överskred minimihöjdskraven) [21] , testprogrammet drog ut på tiden i jämförelse med den ursprungliga planen och som ett resultat, från det att testerna började fram till mitten av 1982, gjordes 89 uppskjutningar. För att spara pengar utrustades de experimentella prototyperna av raketerna med ett fallskärmssystem istället för stridsspetsen, som utlöstes när flyguppdraget avslutats av raketen (eller på kommando från testledningscentralen) för att säkerställa säkerheten för den inbyggda telemetriutrustningen och efterföljande studie av omständigheterna vid varje experimentell uppskjutning [5] . Under de första 20 uppskjutningarna lyckades 17 missiler plockas upp [14] .
Lista över uppskjutningar under flygtestprogrammet [22] [23] | ||||||
---|---|---|---|---|---|---|
startnummer | datum och tid | raketnummer | PU typ | rakettyp | notera | resultat |
ett | 13 februari 1976 | T4:1 | TA | segelflygplan | Kasta test | framgångsrik |
2 | 15 februari 1976 | T6:1 | TA | segelflygplan | Kasta test | framgångsrik |
3 | 28 mars 1976 | T7:1 | Flygplan A-6 | segelflygplan | Integrering av fjärrkontroll och kontrollsystem med en raket. 1:a flygprovet med marschfjärrkontroll | framgångsrik |
fyra | 26 april 1976 | T8:1 | A-6 | segelflygplan | Fladdrar stabilitet och kontroll | framgångsrik |
5 | 16 maj 1976 | T8:2 | A-6 | segelflygplan | Expansion av flyglägen | framgångsrik |
6 | 5 juni 1976 | T9:1 | A-6 | RPNC | Integrering av SU och DU med en raket. 1:a flygningen med SS med TERCOM-korrigering | framgångsrik |
7 | 11 juni 1976 | T8:3 | A-6 | segelflygplan | Expansion av flyglägen | nödsituation |
åtta | 16 juli 1976 | T9:2 | A-6 | RPNC | Utveckling av navigationssystemet TERCOM, 1:a flygningen med demonstration av terrängundvikande | framgångsrik |
9 | 30 juli 1976 | T9:3 | A-6 | RPNC | Utveckling av navigationssystemet, TERCOM, terrängundvikande | nödsituation |
tio | 8 augusti 1976 | T8:4 | A-6 | segelflygplan | Bestämning av den angivna flyghastigheten; flygövningar på låg höjd | framgångsrik |
elva | 27 augusti 1976 | T10:1 | A-6 | RPNC | Öka flygprestanda | framgångsrik |
12 | 1 september 1976 | T8:5 | A-6 | segelflygplan | Öva manövrar i sista avsnittet, utöka flyglägen | framgångsrik |
13A | 28 september 1976 | T10:2 | A-6 | RPNC | Första demonstrationen av markmålkapacitet | framgångsrik |
13B | 30 september 1976 | |||||
fjorton | 14 oktober 1976 | T11:1 | A-6 | segelflygplan | Öka flygprestanda | framgångsrik |
femton | 15 november 1976 | T11:2 | A-6 | segelflygplan | Öka flygprestanda | nödsituation |
16 | 7 december 1976 | T12:1 | A-6 | RCC | 1:a över horisonten ytsökning och förvärvsdemonstration | framgångsrik |
17 | 29 januari 1977 | T10:3 | Flygplan | RPNC | 1:a flygtestet SMAC - terrängbildskorrigeringssystem för att minska KVO | framgångsrik |
arton | 11 februari 1977 | T12:2 | Flygplan | RCC | Öva sökning över horisonten och målförvärv | framgångsrik |
19 | 24 februari 1977 | T5:1 | Markavkastare | segelflygplan | 1:a uppskjutningen från en container, första uppskjutningen från en mobil markutskjutningsanordning, testning av övergången från uppskjutning till marschkontroll | framgångsrik |
tjugo | 19 mars 1977 | T10:4 | Flygplan | RPNC | Gratis flygning på markvägen, SMAC-testning | framgångsrik |
21 | 12 april 1977 | T12:3 | Flygplan | RCC | Utveckling av projektet för radarledning över horisonten "Outlaw Shark" genom en ubåtsförmedlare, expansion av flyglägen | framgångsrik |
XXX | 9 juni 1977 | T6:4 | TA | RCC | Utvärdering av möjligheten att flyga i motsatt riktning | framgångsrik |
22 | 20 juni 1977 | T3:1 | TA | RCC | Test av utgången från vattnet och övergången till framdrivningsmotorn, förberedande för den första undervattensuppskjutningen | nödsituation |
23 | 7 januari 1978 | T10:5 | Flygplan | RPNC | 1:a flygtestet som en del av bedömningen av överlevnadsförmåga från luftförsvarssystem, bedömning av "vän eller fiende"-systemet | framgångsrik |
24 | 2 februari 1978 | T4:2 | USS Barb | RPNC | Första uppskjutningen från en ubåt, från periskopets djup | framgångsrik |
25 | 2 februari 1978 | T14:1 | USS Barb | RCC | uppskjutning från periskopdjup | delvis framgångsrik |
26 | 16 mars 1978 | T11:3 | Flygplan | RPNC | uppskjutning på låg höjd, flygning enligt en förberedd flyguppgift, överlevnadsbedömning (från luftförsvarssystem) | framgångsrik |
27 | 18 april 1978 | T11:4 | Flygplan | RPNC | överlevnadsbedömning (från luftförsvarssystem) | framgångsrik |
28 | 24 april 1978 | T4:3 | Markavkastare | RPNC | 2:a sjösättning på marken; utveckling av mobil launcher, launch control, kontrollsystem, utvärdering av flygdata | framgångsrik |
29 | 26 maj 1978 | T10:6 | Flygplan | RPNC | 1: a TAAM- demonstrationen : bedömning av separationen av subammunition av klusterstridsspetsar som träffar banan; korrigering från DSMAC | framgångsrik |
trettio | 21 juni 1978 | T11:5 | Flygplan | RPNC | Flygning enligt ett i förväg förberett flyguppdrag, bedömning av överlevnadsförmåga (från luftvärnssystem), längs vägen kontrollerades stridsförmåga för att fånga och eskortera en kryssningsmissil från marken med radarledningsstationer för luftvärnssystemen Hawk och Roland , IR GOS SAM Chaparral , Stinger och Redeye [24] | framgångsrik |
31 | 25 juli 1978 | T13:1 | PL | RCC | uppskattning av bana över horisonten | nödsituation |
32 | 25 juli 1978 | T18:1 | PL | RCC | Utvärdering av banan för vägledning över horisonten | nödsituation |
33 | 28 juli 1978 | T11:6 | Flygplan | markmål | Flygning enligt en förberedd flyguppgift, terrängundvikande test, överlevnadsbedömning | framgångsrik |
34 | 14 september 1978 | T4:4 | Flyttbart stativ | RPNC | Ytuppskjutningstestning från en dynamisk plattform (den så kallade "rocking stand"), överlevnadsbedömning | nödsituation |
35 | 30 oktober 1978 | T11:7 | Flygplan | RPNC | Flygning enligt en förberedd färdplan, terrängundvikande testning, överlevnadsbedömning | delvis framgångsrik |
36 | 13 december 1978 | T11:8 | Flygplan | RPNC | Flygning enligt en förberedd färdplan, terrängundvikande testning, överlevnadsbedömning | framgångsrik |
37 | 29 januari 1979 | T20:1 | Markavkastare | RCC | Utvärdering av tätningssystemet, pyrotekniskt system, lansering av fjärrkontrollen och övergång till marschen | framgångsrik |
38 | 14 februari 1979 | T18:2 | PL | RCC | Testa en undervattensuppskjutning på ett givet djup och en viss hastighet: utvärdering av tätningssystemet, pyrotekniskt system, uppskjutning av fjärrkontrollen och övergång till kryssningen | framgångsrik |
39 | 22 februari 1979 | T24:1 | PL | RCC | TASM- bedömning på djupet, bedömning av tryckutjämningssystem | framgångsrik |
40 | 13 april 1979 | T20:2 | Markavkastare | RCC | 1:a testet av anti-skeppsmissiler med ett passivt detekteringssystem PI/DE ; PS lanseringskvalitetskontroll, flygutvärdering med PS kvalitetskontroll | framgångsrik |
41 | 21 april 1979 | T11:9 | Flygplan | RPNC | Test av det nya TERCOM-systemet/terminalkartor. Överlevnadsbetyg | nödsituation |
42 | 7 juni 1979 | T10:7 | Flygplan | RPNC | Test av det nya TERCOM-systemet/terminalkartor. Överlevnadsbetyg | nödsituation |
43 | 28 juni 1979 | T18:3 | PL | RCC | Vägledning över horisonten i realtid, första lanseringen med Mk117 FCS , överlevnadsbedömning | framgångsrik |
44 | 17 juli 1979 | AL2:1 | Flygplan | RPNC | 1:a lanseringen med en roterande bärraket. Utveckling av ett modifierat (Case I) navigationssystem. | framgångsrik |
45 | 19 juli 1979 | T24:2 | PL | RCC | Utveckling av ARLGSN i söklägena PL2 och passiv detektering PI/DE | framgångsrik |
46 | 1 augusti 1979 | AL1:1 | Flygplan | RPNC | Utveckling av navigationssystemet | inga data |
47 | 8 augusti 1979 | T17:1 | PL | RPNC | Integrering av avdelningen för energianläggningar (särskild stridsspets eller störningsstation). Demonstration av ett angrepp på ett markmål; TERCOM-uppdatering; luftvärnsgenombrott | nödsituation |
48 | 9 augusti 1979 | T20:3 | PL | RCC | Utvärdering av Mk117 SLA ; testa ARLGSN i PL2-sökning och passiv detektering PI/DE-lägen, vägledning över horisonten; överlevnadsbedömning | nödsituation |
49 | 9 september 1979 | T24:3 | Flygplan | Första lanseringen av AGM-109 från B-52 pylon | inga data | |
femtio | (13) 14 september 1979 | T18:4 | Markavkastare | RCC | 1:a vertikala lanseringen; användning av SWT ARLGSN-läge | framgångsrik |
51 | 29 september 1979 | AL4:1 | Flygplan | RPNC | Utvärdering av flygprestanda | inga data |
52 | 27 oktober 1979 | AL2:2 | Flygplan | RPNC | träffar målet | inga data |
53 | 7 november 1979 | T17:2 | PL | RPNC | Kontroll av S-bandssändaren (Energidepartementet, speciell stridsspets eller störningsstation). Öva ett angrepp på ett markmål; insamling av data om stridsspetsens driftsförhållanden; | framgångsrik |
54 | 15 november 1979 | AL6:1 | Flygplan | RPNC | Lansering på hög höjd och transportörens flyghastighet | inga data |
55 | 6 december 1979 | AL1:2 | Flygplan | RPNC | Utvärdering av flygprestanda | inga data |
56 | 27 december 1979 | AL4:2 | Flygplan | RPNC | Lansering vid låghöjdsflygning, utvärdering av flygprestanda | inga data |
57 | 24 januari 1980 | AL7:1 | Flygplan | RPNC | Starta på hög höjd och bärarens flyghastighet och träffa målet | inga data |
58 | 8 februari 1980 | AL5:1 | Flygplan | RPNC | Lansering enligt plan för Strategic Air Command, utvärdering av flygprestanda | inga data |
59 | 13 mars 1980 | T19:1 | Markavkastare | RCC | 1:a sjösättning från en lutande fyrskjutsraket Mk143 ABL för ytfartyg; användning av SWT ARLGSN-läge | framgångsrik |
60 | 19 mars 1980 | T27:1 | USS Merrill | RCC | 1:a sjösättning från ett ytfartyg; demonstration av interaktionen "fartyg / integrerat vapenkontrollsystem / bärraket Mk143 ABL " | delvis framgångsrik |
61 | 16 maj 1980 | T16:1 | Markavkastare | RPNC | 1:a lanseringen under GLCM-programmet med en TEL -mobilstartare ; utveckling av en speciell stridsspets W84 | framgångsrik |
62 | 6 juni 1980 | T20:4 | Ubåt USS Guitarro | RCC | Utveckling av en modifierad Mk117 Mod (6T) FCS och vägledning över horisonten | framgångsrik |
63 | 8 juli 1980 | T24:4 | PL | RCC | Ubåtens maximala djup och hastighet; utveckling av processen för att förbereda banan för kontrollerad flygning | nödsituation |
64 | 16 augusti 1980 | T15:1 | Flygplan | RPNC | Demonstration av egenskaperna hos DSMAC Block I och SU Block III | nödsituation |
65 | 26 november 1980 | T16:2 | Markavkastare | RPNC | 1:a lanseringen från en prototyp av vertikal bärraket VLS (mark) | framgångsrik |
66 | 16 december 1980 | T27:2 | PL | RCC | Ubåtens maximala djup och hastighet; utveckling av förberedelseprocessen för flyguppdrag | nödsituation |
67 | 15 januari 1981 | T42:1 | PL | RCC | Demonstration av missilens egenskaper i styrläget för GOS PL2, målets första verkliga träff | framgångsrik |
68 | 21 januari 1981 | T28:1 | PL | RCC | Demonstration av missilens egenskaper i BOL -sökarvägledningsläget (“bearing-only launch” - sökaren slås på omedelbart efter lanseringen) | framgångsrik |
69 | 23 januari 1981 | T43:1 | PL | RCC | Demonstration av raketens egenskaper i guidningsläget för GOS PL4 | framgångsrik |
70 | 15 februari 1981 | T17:3 | PL | RPNC | 1:a attacken mot ett markmål med en helt standardmissil med konventionell utrustning; utvärdering av DSMAC Block 1- systemet | framgångsrik |
71 | 20 mars 1981 | T40:1 | PL | RCC | Demonstration av raketens egenskaper i guidningsläget för GOS PL3 | framgångsrik |
72 | 28 mars 1981 | T50:1 | PL | RPNC | 1:a undervattensuppskjutningen av en raket i konventionell utrustning, mot ett markmål; demonstration av utfärdande korrigeringar av TERCOM- och DSMAC-system | framgångsrik |
73 | 10 juli 1981 | T51:1 | PL | RPNC | 1:a nederlaget för ett riktigt markmål; demonstration av ett planeringssystem för missilangrepp | framgångsrik |
74 | 30 juli 1981 | T50:2 | PL | RPNC | Raketbetyg vid konventionell laddning | framgångsrik |
75 | 2 augusti 1981 | T41:1 | PL | RCC | Demonstration av raketens egenskaper i guidningsläget för GOS PL2 | nödsituation |
76 | 19 september 1981 | T17:4 | Flygplan | RPNC | 1:a flygningen på natten; nattliga DSMAC-resultat | framgångsrik |
77 | 27 oktober 1981 | T52:1 | PL | RPNC | TLAM -C certifiering - missiler i konventionell utrustning för att attackera ett markmål | framgångsrik |
78 | 7 november 1981 | T54:1 | PL | RPNC | TLAM -C certifiering | nödsituation |
79 | 14 december 1981 | T53 | PL | RPNC | TLAM -C certifiering | inga data |
80 | 28 januari 1982 | T48 | PL | RCC | inga data | |
81 | 25 februari 1982 | T72:1 | Markavkastare | RPNC | 2:a lanseringen under GLCM-programmet med överföring av flyguppgiften till TEL från LCC | inga data |
82 | 25 mars 1982 | T73:1 | Markavkastare | RPNC | GLCM poäng | inga data |
83 | 30 mars 1982 | T56 | PL | RPNC | Trupp testar TLAM-C ( OPEVAL - bokstavligen operationsbedömning ) | inga data |
84 | 19 maj 1982 | T74:1 | Markavkastare | RPNC | Trupp GLCM-bedömning (OPEVAL) | inga data |
85 | 21 maj 1982 | T55 | PL | RPNC | TLAM-C poäng | inga data |
86 | 8 juli 1982 | T60 | PL | RCC | TASM- utvärdering i en militär miljö (OPEVAL) | målträff |
87 | 18 juli 1982 | T45 | PL | RCC | TASM-utvärdering under militära förhållanden (OPEVAL). Riktig stridsspets, målsjunkande ( nedlagd jagare " Agerholm ") | målträff |
88 | 20 juli 1982 | T46 | PL | RCC | TASM-utvärdering i en militär miljö (OPEVAL) | Fröken |
89 | 26 juli 1982 | T107 | PL | RCC | TASM truppbedömning (OPEVAL) | Fröken |
oktober 1986 | RK | RPNC | Kontrollera raketens stridsförmåga, uppskjutning från ett bärarfartyg i Mexikanska golfen på en markbegravd bunker på ett avstånd av mer än 800 km, flygande på en höjd av upp till 150 meter med en antiradarmanöver vid inflygning till målet [25] | målträff |
Man bör komma ihåg att listan över tester inte inkluderade lanseringsförsök som misslyckades på grund av tekniska skäl ( no-go ), såsom: fel på tändsystemet och andra orsaker till att en eller annan uppskjutning inte ägde rum . Dessutom föredrog militära tjänstemän att inte använda uttrycket "misslyckad uppskjutning" ( misslyckande ), istället använde den mer strömlinjeformade formuleringen "delvis lyckad uppskjutning" ( partiell framgång ), samtidigt som de antydde att allt gick bra tills en eller flera misslyckades eller misslyckades ett annat delsystem [26] .
Uppskjutning av missiler från bärraketer utförs genom torpedrör av ubåtar av 533 mm eller mer kaliber och från ytfartyg från lutande bärraketer av ABL-typ (Mk 143) och vertikala bärraketer Mk 41 (även vissa typer av atomubåtar är utrustade med dessa vertikala bärraketer). För att skjuta upp missiler av BGM-109G-modifieringen användes TEL-markcontainerkastare, men i samband med ingåendet av ett avtal mellan Sovjetunionen och USA om eliminering av medel- och kortdistansmissiler 1987 , drogs de tillbaka från tjänst och förstördes 1991.
Totalt, enligt uppgifterna för 2016, kan den amerikanska flottan samtidigt installera från 4671 till 7743 Tomahawk kryssningsmissiler på mer än 120 yt- och undervattensfartyg. Om det finns ett lämpligt antal av dessa, och på bekostnad av andra typer av vapen. Dessutom kan strikt en typ av missiler för en bärare laddas i universella amerikanska bärraketer.
AvveckladeFlygprofilen för en missil i det vertikala planet beror på dess kontrollsystem och stridsuppdraget som utförs, innan den närmar sig målet, börjar en missil utrustad med ett målsökningshuvud med en målsökningsfunktion att utföra en glidning ( ovan ), en missil utrustad med tröghetsnavigeringsutrustning med en programmerad flygrutt börjar omedelbart dyka ( nedan ). | ||
Missilstyrningssystemet är nästan identiskt med Harpoon anti-skeppsmissil . [5] Flygprofilen för en missil utrustad med ett målsökningshuvud (målinsamling och målsökningssystem) är som följer: den marscherande delen av flygbanan innebär att böja sig runt terrängen utanför zonen för effektiv detektering av fiendens radar , så att flygningen sker med hjälp av den inbyggda tröghetsnavigeringsutrustningen (midcourse guidance unit) på låg och extremt låg höjd, innan flygningens slutfas vinner raketen höjd, dual-mode radar referenshuvudet aktiveras och sökandet efter målet börjar i det passiva avsökningsläget, efter att målet har detekterats, aktiveras det aktiva radarmålläget och målet fångas av sökaren, varefter raketen går in i målet. I avsaknad av exakta målkoordinater (när man skjuter mot rörliga mål) styrs missilen av ungefärliga sådana och i en given sektor av luftrummet växlar till flygning i målsökningsläge, vid denna tidpunkt skannar GOS det undersökta området på den främre halvklotet för närvaron av mål, identifiera dem genom övergripande egenskaper (längd, bredd, höjd, form) från uppsättningen parametrar som är inbäddade i programvaran . För modeller som inte har en sökare (konstruerade för att skjuta mot stationära markmål, fartyg och fartyg vid ankarplats) är flygprofilen praktiskt taget densamma, förutom att raketen inte stiger innan den närmar sig målet utan börjar helt enkelt dyka , guidningsfunktionen utförs autopilot utan att först söka efter ett mål [31] .
De genomsnittliga månatliga produktionssiffrorna på 1980-talet motsvarade definitionen av "småskalig produktion" och uppgick till fem missiler per månad (produktionskapaciteten vid Convair-fabrikerna i San Diego begränsades av antalet verktygsmaskiner och annan utrustning och gjorde inte överstiga 60 missiler per månad, 20 med full kapacitet enligt fredstidsnormer och 60 vid anslutning av alternativa leverantörer). [32] Prestanda för andra associerade entreprenörer var inte mycket före dem: Atlantic Research tillhandahöll 20 startmotorer, Williams Research och Teledyne tillhandahöll 20 underhållsmotorer, McDonnell Douglas tillhandahöll 10 navigationsenheter för konventionella modifieringar, Texas Instruments" - 15 block av navigationsutrustning för anti-skeppsmodifiering. Produktionen av vart och ett av dessa element kunde ökas till 120 stycken. per månad efter ytterligare bemanning av företag med arbetskraft, införande av en skiftarbetsdag och anslutning av alternativa leverantörer vid behov (hot om ett större regionalt krig och liknande situationer). [33]
Till skillnad från projekten för andra kryssningsmissiler hade Tomahawk-projektet ingen huvudentreprenör, istället hade det fyra eller fem medarbetare , med var och en av dem hade marinen ett individuellt kontrakt (det fanns tre sådana entreprenörer från början, andra lades senare till dem ), [34] som ansvarar för produktionen av skrov, delar av styrsystemet, instrumentering, underhålls- och startmotorer, samt underleverantörer som kontrakterats av associerade entreprenörer för att leverera komponenter och utföra andra produktionsuppgifter av låg betydelse. Följande kommersiella strukturer deltog i produktionen av olika komponenter och sammansättningar av missiler.
Systemintegration"Tomahawk" utvecklades i ett antal modifieringar, inklusive alternativ som skiljer sig i typen av stridsspets (med en kärnstridsspets (strategisk); med en högexplosiv fragmenteringsstridsspets (operativ-taktisk)) och i bärarens arbetsmiljö [3] [39]
De första modifikationerna av dessa missiler, kända som Tomahawk Block I, var den strategiska BGM-109A TLAM-N ( Tomahawk Land-Attack Missile - Nuclear ) med en termonukleär stridsspets (liknande de som användes på AGM-86B och AGM-69B ) [40] och anti -ship BGM-109B TASM ( eng. Tomahawk Anti-Ship Missile ) med en konventionell stridsspets. Ursprungligen utsågs KR-modifieringar för olika typer av uppskjutningsmiljöer genom att tilldela ett digitalt suffix, så BGM-109A-1 och -109B-1- indexen betecknade ytuppskjutna missiler och BGM-109A-2 och -109B-2 - under vattnet . Men 1986, istället för det digitala suffixet för att beteckna uppskjutningsmiljön, började bokstäverna "R" för ytfartyg och "U" för ubåtar användas som den första bokstaven i indexet ("B" - som betecknar mångfalden av lanseringsmiljöer).
Havsuppskjutna kryssningsmissiler ( SLCM )Efter typ av flytande hantverksfartyg (för ytbaserade missiler):
Efter typ av transport- och utskjutningscontainer [41] :
Enligt missilkontrollsystemet på den sista (terminala) sektionen av banan [40] :
Några militära index:
8 av 16 varianter testade 1977 [42] [43] | ||||
---|---|---|---|---|
Baseringsmetod | Stridsspets | Raketkontroll under flygning | Program | Status |
Luft | YABCh | tröghetsnavigering | TALCM för att skjuta mot markmål | stängd |
Landa | YABCh | tröghetsnavigering | GLCM för att skjuta mot markmål | slutförd |
fartyg | OFBCH | målsökning | SLCM anti-skepp | slutförd |
Under vattnet | OFBCH | målsökning | SLCM anti-skepp | slutförd |
fartyg | YABCh | tröghetsnavigering | SLCM för att skjuta mot markmål | slutförd |
Under vattnet | YABCh | tröghetsnavigering | TSLCM för att skjuta mot markmål | slutförd |
Landa | OFBCH | målsökning | GLCM anti-skepp | stängd |
- program som har fått vidareutveckling. - program som inte har fått vidareutveckling. |
Totalt var 16 program under utveckling (8 hemliga och 8 topphemliga ) som kombinerar ovanstående parametrar i olika kombinationer (till exempel KRVB-OFBCH-GSN-PKR , KRPL-YABCH -INS -STs , KRNB-YABCH-INS-STs och etc.), mellan vilka det fanns en hög grad av utbytbarhet av aerodynamiska element, delar av styrsystem, motorer, etc., samtidigt som kostnaden och teknisk förenkling av produktionen minskade [44] .
Ubåtsbaserade modifieringar (SLCM) optimerades för att passa ombord på alla amerikanska attackubåtar , och ytmodifieringar var avsedda att beväpna olika typer av fartyg. Landbaserade (GLCM) och luftbaserade (TALCM) missilmodifieringar utvecklades för flygvapnet, för att placeras på självgående bärraketer av hjulförsedda traktorer av lastbilstyp (sedan arméns kommando, som vanligtvis är fallet i Förenta staterna stater, visade inte intresse) och på externa upphängningspunkter för undervingspyloner strategiska bombplan (i detta segment av utvecklingsarbete tävlade Tomahawk med den lovande AGM-86A , som i slutändan var att föredra). [5]
Den ursprungliga modifieringen av Tomahawk (även om den senare antogs av anti-skeppet TASM) var en långdistans kryssningsmissil med en kärnstridsspets . Den första uppskjutningen av en seriemodell genomfördes 1980, men på grund av en lång förfining togs raketen officiellt i bruk först 1983 [45] .
Raketen hade ett tröghetskontrollsystem, kompletterat med TERCOMs korrigeringssystem för avlastningsmätare. Den var utrustad med en kärnstridsspets W-80 med en effektvariabel från 5 till 200 kiloton . Räckvidden för missilen översteg 2500 km (modifieringen med längsta räckvidd). BGM-109A-missilerna var avsedda att placeras på ytfartyg (senare kallat RGM) i ABL - raketer , och på ubåtar (UGM-modifiering), för att skjutas upp genom en standard 533 mm TA [45] .
Tekniskt sett betraktades BGM-109A av den amerikanska flottan som ett lika effektivt förebyggande /repressalievapen, eftersom möjligheten att baseras på icke-specialiserade bärare underlättade dess utplacering nära fiendens territorium, och upptäckt och avlyssning av en missil p.g.a. dess låga flyghöjd var ett allvarligt problem för befintliga luftförsvarssystem på 1980-talet [46] .
Alla BGM-109A-missiler togs ur drift under START-I [sn. 3] i början av 1990-talet.
RGM/UGM-109B Tomahawk Anti-Ship Missile (TASM)En av de första icke-nukleära modellerna av missilen (och den första modellen som antogs för tjänst) var en långdistansanti- skeppsmissil under beteckningen RGM / UGM-109B TASM. Strukturellt sett var TASM en Tomahawk, på vilken TERCOM-systemet, som var oanvändbart när det flög över havet, ersattes av en aktiv radar liknande GOS Harpoon anti-skeppsmissiler . Missilen var designad för att förstöra ytmål på långa avstånd och var utrustad med en 450-kilos semi -pansarbrytande stridsspets.
Den maximala räckvidden för TASM var 450 kilometer. Till skillnad från sovjetiska långdistansmissiler som P-700 Granit flög TASM hela denna sträcka på ultralåg höjd (ca 5 meter över havet) och kunde inte upptäckas av fartygets radar på långt avstånd [47] .
På grund av raketens underljudshastighet tog flygningen till det maximala avståndet ungefär en halvtimme. Under denna tid kunde ett höghastighetsfartyg lämna det beräknade lokaliseringsområdet, därför, efter att ha anlänt till den avsedda platsen för målet, började TASM sökmanövern för "orm" [48] . TASM GOS kunde känna igen storleken på fartygen och välja ut de största [49] . När missilen närmade sig målet utförde missilen programmerade undanmanövrar och attackerade den antingen i en skjutande flygning, träffade sidan (för stora fartyg) eller utförde en "backe"-manöver och föll på målet från ett dyk (för små manövrerbara båtar) . Missilsökaren opererade vid variabla frekvenser och kunde fungera i ett passivt läge och riktade mot fiendens radar.
Missilen kunde skjutas upp från samma bärraketer som den konventionella Tomahawken, såväl som från ubåtstorpedrör.
Trots sin långa räckvidd och låga höjd var TASM en ganska primitiv missil, oförmögen att utföra koordinerade attackmönster, så den amerikanska flottan uppskattade inte dess stridsvärde för högt. Dessutom hade missilen inte ett "vän eller fiende" identifieringssystem, vilket gjorde det svårt att använda den i närvaro av vänliga eller neutrala fartyg nära målet. Ett antal förslag lades fram för att modernisera missilen, särskilt för att utrusta den med ytterligare målbeteckning från en orbitalplattform eller en bärarbaserad helikopter, men de implementerades inte. I början av 2000-talet, på grund av den relativa minskningen av den internationella spänningen, togs missilen ur bruk och alla befintliga prover omvandlades till andra modifieringar [49] [sn. 4] .
2012 föreslog Raytheon att återuppliva TASM som en billig modifiering för befintliga Tomahawks [50] . Projektet ansågs av flottan som en reservlösning i händelse av fel på den nya långdistansmissilen LRASM; men det främsta klagomålet mot projektet var missilens relativt höga EPR , som (med sin subsoniska hastighet och oförmågan att gömma sig bakom terrängen när man kör över havet) gjorde den nya TASM till ett lätt offer för moderna fartyg med kort räckvidd luftförsvarssystem. För närvarande[ vad? ] projektet reviderades till en plan för att skapa en modifiering med två syften som kan träffa både land- och havsmål [51] .
RGM/UGM-109C Tomahawk Land-Attack Missile—konventionell (TLAM-C)Den första modifieringen med en icke-nukleär stridsspets, designad för att förstöra markmål. Den utvecklades av den amerikanska flottan för exakt förstörelse av strategiskt viktiga föremål bakom fiendens linjer.
Istället för en kärnstridsspets fick raketen en högexplosiv fragmenteringsstridsspets WDU-25 / B som vägde 450 kg. Tyngre i jämförelse med kärnstridsspetsen tvingades minska missilens räckvidd till 1250 km (1600 - i Block III-modifieringen).
Eftersom tröghetsstyrsystemet gav en QUO i storleksordningen 80 meter, vilket inte räckte för en icke-nukleär stridsspets, var missilen utrustad med AN / DXQ-1 DSMAC (Digital Scene Matching Area Correlation) optoelektroniskt måligenkänningssystem. Systemet tillåter missilen att känna igen markmål, jämföra dem med bilden av målet i minnet på omborddatorn och utföra vägledning med en QUO med en noggrannhet på 10 meter [52] .
Den första modifieringen av missilen - Block-II - attackerade målet endast på låg nivå flygning , strikt på kursen. Den efterföljande modifieringen - Block-IIA - hade två attacklägen: "slide" följt av ett dyk på målet från ovan och programmerad stridsspetsdetonation - missilen detonerades exakt i ögonblicket för flygningen över målet.
Block-III-modifieringen, som antogs 1994, hade en kraftfullare motor och en ny WDU-36 / B stridsspets med mindre vikt, men jämförbar kraft. Detta gjorde det möjligt att öka skjuträckvidden till 1600 km. TLAM-C Block-III var den första missilen i familjen som fick ett GPS -styrsystem förutom tröghetsstyrning och TERCOM-systemet .
Planerad, men inte genomförd av ekonomiska skäl, innebar modifieringen av Block-IV TMMM (Tomahawk Multi-Mode Missile) skapandet av en enda modell av en missil som kan attackera både markmål och fartyg. Det var tänkt att installera ett nytt radarsystem för måligenkänning. Programmet stängdes till förmån för Tactical Tomahawk-programmet.
RGM/UGM-109DModifiering av TLAM-C med en klusterstridsspets , inklusive 166 BLU-97/B CEB submunition. Det var avsett att förstöra områdesmål, såsom flygfält och koncentrationer av fientliga trupper. På grund av den stora massan av klusterstridsspetsen hade denna modifiering av missilen den kortaste räckvidden av alla, lika med 870 kilometer [52] .
BGM-109EAntagen anti-skeppsmodifiering, för att ersätta TASM. Inte genomförd, avbröts utvecklingen i mitten av 1980-talet. Beteckningen BGM-109E överfördes senare till en annan modifiering av missilen [52] .
BGM-109FDen avsedda anti-flygplatsversionen av BGM-109D med tyngre submunition för att effektivt inaktivera flygfältets landningsbana. Ej implementerad, utvecklingen stoppades i mitten av 1980-talet [52] .
BGM-109HDen avsedda versionen av TLAM-C Block-IV-missilen med en penetrationsstridsspets för att förstöra underjordiska anläggningar och befästningar. Ej implementerad. Beteckningen BGM-109H överfördes senare till en annan modifiering.
RGM/UGM-109E Taktisk TomahawkEn missilmodifiering utformad för att göra den mer lämpad för taktiskt stöd av trupper, det vill säga användning i närheten av frontlinjen. Under programmet vidtogs åtgärder för att minska kostnaden för raketen jämfört med tidigare prover genom användning av lättare material och en billigare Williams F415-WR-400/402-motor. UHF-satellitkommunikationssystemet gör det möjligt att rikta om missilen under flygning till vilket som helst av 15 förprogrammerade mål. En TV-kamera installerad ombord gör det möjligt att bedöma målets tillstånd när missilen närmar sig det och ta ett beslut om att fortsätta attacken eller omdirigera missilen till ett annat mål.
På grund av sin lätta design är raketen inte längre lämplig för uppskjutning från torpedrör. Ubåtar utrustade med Mk-41 TLU kan dock fortfarande använda denna missil.
För närvarande är missilen den huvudsakliga modifieringen som används av den amerikanska flottan. Den 5 november 2013 försåg Raytheon den amerikanska flottan med den 3 000:e missilen av denna modifiering [53] från och med 2004 [54] .
RGM/UGM-109H Tactical Tomahawk Penetration VariantModifiering av Tactical Tomahawk, utrustad med en penetrerande stridsspets designad för att förstöra nedgrävda eller välskyddade mål.
RGM/UGM-109E TLAM-E (Tomahawk Block IV)En modifiering av Tactical Tomahawk som för närvarande utvecklas med förbättrade taktiska kapaciteter och ytterligare förmåga att träffa rörliga mål (inklusive ytfartyg).
GLCM (Ground-Launched Cruise Missile) ( BGM-109G Gryphon ) är en landmodifiering av BGM-109A anpassad för att avfyras från en mobil bärraket. Utvecklad gemensamt av den amerikanska flottan och flygvapnet för att ersätta den föråldrade MGM-13 Mace nukleära kryssningsmissilen . Projektet med en självgående bärraket var en koppling av en lastbilstraktor med en plattform av semitrailertyp , på vilken fyra missiler placerades. För testning användes en standardtruck med kombinerade armar M35 , vars kaross byggdes om för att rymma fyra utskjutningsrör (som var och en är samma aluminiumbehållare som för fartygsbaserade däcksutskjutare), med en hydrauliskt driven lyft enhet [6] .
Strukturellt var missilen identisk med BGM-109A med det enda undantaget - användningen av en W-84 termonukleär stridsspets med variabel kraft från 0,2 till 150 kiloton. Raketens effektiva räckvidd var cirka 2500 km. Den lanserades från en specialdesignad fyrskotts TEL-installation, monterad på en tvåaxlig semitrailer med en MAN AG-traktor med en 8 × 8 hjulformel .
I fredstid var missilerna baserade i befästa underjordiska skyddsrum GAMA (GLCM Alert and Maintenance Area). Vid militärt hot skulle missilbatterierna avancera till förutberäknade hemliga stridspositioner. Varje batteri innehöll 16 missiler. Totalt, från 1982 till 1988, utplacerades 6 missilvingar med 448 stridsmissiler, varav 304 i Västeuropa. Tillsammans med Pershing-2- missilerna sågs Griffins som ett adekvat svar på de sovjetiska Pioneer-IRBM :erna i Östeuropa.
Enligt 1987 års fördrag ( INF-fördraget ) pensionerades Griffins (även om de inte var ballistiska missiler) tillsammans med Pershing-2-missilerna.
I början av 2020 blev USMC den första amerikanska militärenheten att ta emot landuppskjutna Tomahawk-kryssningsmissiler: Tomahawks är planerade att placeras ut vid kusten för användning som markbaserade anti -fartygsvapen (ingen enhet i den amerikanska armén har för närvarande Tomahawks ”, som kan startas från marken - dessa system var tidigare avvecklade enligt INF-fördraget). [55]
Version av BGM-109A modifierad för luftuppskjutning från ett bombplan. Den användes under det gemensamma arbetet mellan flottan och flygvapnet under JCMP-programmet (Joint Cruise Missile Project) 1979. Förlorade konkurrensen om Boeing AGM-86 ALCM- raketen [49] .
Vid utvecklingen av en flygmissil lades särskild vikt inte bara och inte så mycket på själva missilen utan på bärraketerna, och Boeing, som utvecklare av ALCM, och General Dynamics, som utvecklare av TALCM, hade en syn på gränssnittsmissiler med flygplan för vapenkontrollsystem ombord som tillverkats av dem, konverterade för att vara utrustade med kryssningsmissiler från B-52G / H strategiska bombplan (12 AGM-86B på en extern sling) och FB-111H jaktbombplan (8 -10 AGM-86B på en extern sele respektive 3 AGM-86A i den interna bombplatsen). Lin-Temko-Vout, som hoppade av tävlingen i den första omgången, hade också planer på att utveckla en flygmissil för sitt eget flygplan - attackflygplanet A-7 . Dessutom genomfördes ett arbetsprogram parallellt för att skapa ett speciellt missilbärarflygplan baserat på befintliga eller utveckla ett nytt ( Cruise Missile Carrier Aircraft , förkortning CMCA ), som ännu mer tillfredsställde storföretagens intressen, eftersom det utlovade order för tillverkning av nya flygplan. Samtidigt försvarade Boeing konsekvent idén att hänga upp missiler på undervingspyloner, medan deras konkurrenter från General Dynamics främjade idén om att placera missiler på en roterande bärraket (som tillät uppskjutning i vilken riktning som helst utan att ändra flygplanets kurs, i detta avseende var operatörens luftburna styrda vapen inte beroende av piloten och kunde agera helt självständigt). [56] [57] För att flytta frågan om att välja ett bärfordon bortom gränserna för två konkurrerande missilutvecklare, var det meningen att den skulle utrusta B-2 strategiska bombplan, som då var under utveckling, för utplacering av kryssningsmissiler , eller använd ombyggda transportfordon för samma ändamål flygplan Lockheed C-5 , Lockheed L-1011 , Boeing 747 eller McDonnell Douglas DC-10 [58] .
AGM-109C/H/I/J/K/L MRASM (Mellandistans luft-till-yt-missil)Planerad på 1980-talet, BGM-109 missilprojekt för flygvapnet. De huvudsakliga ändringarna liknade marinens, med undantag för lämpligheten för uppskjutning från bombplan och variationerna i stridsspetsarna som användes. AGM-109I var tänkt att vara en multi-purpose missil med ett infrarött måligenkänningssystem. Projektet delades därefter upp i Navy AGM-109L och Air Force AGM-109K. På grund av bristen på intresse för programmet från flottan, som var rädd för alltför höga utvecklingskostnader, avslutades det gemensamma programmet 1984. Inte en enda missil implementerades [49] .
Applikationens effektivitet uppnås på grund av:
Följande är fördelarna och nackdelarna med havsbaserade kryssningsmissiler "Tomahawk" i jämförelse med andra medel för USA:s kärnmissilarsenal , strategiska och operativa-taktiska vapen, i samband med debatten om den praktiska genomförbarheten av massproduktion och utplacering av missiler (sammandrag från talet av chefen för attackubåtarna US Naval Command konteramiral Thomas Malone ). [60] Man bör komma ihåg att fördelarna och nackdelarna i tekniska termer (avseende missilens styrsystem och flygprestanda) är desamma för Tomahawk, Griffon och ALC , som har en annan miljö och metod för basering ( hav, land respektive luft).
FördelarRaketens huvudsakliga brister dikterades huvudsakligen av skäl som var oberoende av utvecklarna (geografiska och väderklimatiska egenskaper hos den land troliga fienden nr 1 vid den tiden, det vill säga Sovjetunionen). Erfarenheterna av att använda missiler mot andra länder under den postsovjetiska perioden av världshistorien har visat att missiler , ceteris paribus , uppvisar hög stridseffektivitet i andra teatrar för militära operationer som inte har de angivna begränsande faktorerna mot länder som inte har naturliga skydd mot missiler av Tomahawk-typ.
Eftersom Tomahawken flyger i subsoniska hastigheter (800 km i timmen), inte kan manövrera med höga överbelastningar och inte kan använda lockbeten , kan den upptäckta missilen träffas av moderna luftförsvars- och missilförsvarssystem som uppfyller höjdrestriktioner. [70] [71] [72]
Enligt experter inom elektronisk krigföring är "Tomahawks" "ett svårt mål och det finns inga tillräckligt effektiva medel för elektronisk krigföring i världen som garanterat kan slå dem ur kurs eller inaktivera dem" [73] .
Totalt har mer än 2 000 CD-skivor använts i stridsoperationer sedan det ögonblick de togs i bruk [74] . Den 2000:e missilen avfyrades 2011 från jagaren USS Barry (DDG-52) under Operation Odyssey Dawn i Libyen [75] , samma år genomfördes den 500:e testuppskjutningen av denna CD under operationsperioden [76] .
Huvudoperatörerna är USA och Storbritannien.
Nederländerna (2005) och Spanien (2002 och 2005) var intresserade av att förvärva Tomahawks, men vägrade senare, 2007 respektive 2009, att köpa dem.
Under perioden 1998 till 2011 levererades den [82] :
Inköp av missiler för den amerikanska flottan [83] :
År | Missiler, st. | Missiler, miljoner $ | FoU, miljoner $ | Reservdelar, miljoner $ | Totalt miljoner $ |
---|---|---|---|---|---|
1991 | 678 | 1045,9 | 12.2 | 28.1 | 1097,4 |
1992 | 176 | 411,2 | 33.1 | 15.9 | 470,8 |
1993 | 200 | 404,2 | 3.7 | 14.7 | 422,6 |
2012 beställde den amerikanska flottan en Tomahawk Block IV kryssningsmissil för 338 miljoner dollar från Raytheon 361. Avtalet föreskriver överföring av 238 vertikala avfyrningsmissiler för ytfartyg och 123 missiler för ubåtar. Leverans bör vara klar i augusti 2014 [84] .
Det finns många modifieringar av denna missil, som skiljer sig huvudsakligen i typen av stridsspets, maximalt flygområde och typ av styrsystem.
Garantitiden för Block IV-missilen är 15 år. Den totala livslängden, med hänsyn tagen till modernisering, kommer att vara minst 30 år. Sedan 3 600 Tomahawks av den senaste modifieringen togs i bruk 2004, kommer det första testet att ske under räkenskapsåret 2019, samtidigt som deras modernisering till Block V-variantmissiler i två modifieringar: Block Va-index (beteckning RGM-109E / UGM-109E) kommer att ta emot kryssningsmissiler konverterbara till varianten Maritime Strike Tomahawk (MST), utrustad med ett styrsystem för att kunna träffa ytmål. Block Vb-index (beteckning RGM-109M / UGM-109M) kommer att ta emot missiler som behåller sitt huvudsakliga syfte för att träffa markmål och är utrustade (efter 2022) med det nya Joint Multiple Effects Warhead System (JMEWS) penetrerande stridsspets. JMEWS kombinerar en kumulativ förladdning med en penetrerande stridsspets, och luft eller mark (icke-penetrerande) detonation av stridsspetsen kan också tillhandahållas. [85]
RGM/UGM-109A TLAM-N |
RGM/UGM-109B TASM |
BGM -109GGLCM |
RGM/UGM-109C TLAM-C |
RGM/UGM-109D TLAM-D |
RGM/UGM-109E Taktisk Tomahawk |
RGM/UGM-109H TTPV |
AGM-109H/K MRASM |
AGM-109L MRASM | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Bild | |||||||||||
Moderniseringsstadiet | Tomahawk Block I | Tomahawk Block II/IIA | Tomahawk Block III | Tomahawk Block II/IIB | Tomahawk Block III | Tomahawk Block IV (tidigare Block V) |
|||||
Basera | Yta / Undervatten | Mobilt land | Yta / Undervatten | Yta/Undervatten (med UVP ) | Yta / Undervatten | Luftburen ( B-52 ) | Luftburen ( A-6E ) | ||||
År då leveranserna påbörjades | 1983 | 1986 | 1993 | 1988 | 1993 | 2004 | 2005 (plan) | utvecklingen stoppades 1984 | |||
Räckvidd | 2500 km | 460 km (550 km [86] ) | 2500 km | 1250 km | 1600 km (till 1850) | 870 km | 1250 km [87] | 1600 km [87] (2400 [88] ) | inga data | 2500 km (~ 600 [89] ) 472/509 km (H/K) [sn. 6] [90] |
~600 km [89] (564 [90] ) |
Längd | 5,56 m 6,25 m (med booster) |
5,84 m (5,94 [90] ) | 4,88 m | ||||||||
Vingspann | 2,62 m | ||||||||||
Diameter | 531 mm (518 [87] ) | 518 mm | 531 mm (518 [87] ) | ||||||||
Vikt | 1180 kg 1450 kg (med CDS) |
1200 kg 1470 kg (med CDS) |
1310 kg 1590 kg (med CDS) |
1450 kg [86] |
1220 kg 1490 kg (med CDS) |
~1500 kg | 1200 kg | 1315 kg (H) 1193 kg (K) [90] |
1009 kg [90] | ||
Bränsletillförseln | ~365 kg | ~465 kg | ~365 kg | ~465 kg | ~205 kg | ||||||
Flyghastighet | upp till 880 km/h (0,5-0,75 M ) | ||||||||||
upprätthållande motor | Williams F107-WR-400 turbofläkt med 2,7 kN dragkraft |
Williams F107-WR-402 turbofläkt med 3,1 kN dragkraft |
Williams F107-WR-400 turbofläkt med 2,7 kN dragkraft |
Williams F107-WR-402 turbofläkt med 3,1 kN dragkraft |
Williams F415 -WR-400/402 turbofläkt med 3,1 kN dragkraft | TRD Teledyne CAE J402-CA-401 dragkraft 3,0 kN | |||||
startar motorn | Raketmotor för fast drivmedel Atlantic Research Mk 106 dragkraft 26,7 kN i 12 s |
Raketmotor för fast drivmedel Mk 135 | tillämpas inte | ||||||||
Stridsspets | nuclear W80 (5-200 kt ), 110 kg [86] |
semi- pansarpiercing WDU-25 / B , 450 kg (från Bullpup B ) |
nuclear W84 (5-150 kt) | semi- pansarpiercing WDU-25/B , 450 kg | OFBCH WDU-36 / B , 340 kg ( VV - PBXN-107) | kassett 166 BE kombinerad verkan BLU-97/B CEB(1,5 kg styck) i 24 kassetter |
OFBCH WDU-36/B, 340 kg ( PBXN-107 typ 2 ) | penetrerande WDU-43/B |
AGM-109H: 28 BLU-106/B BKEP betong -piercing 19 kg (58 TAAM, totalt 481 kg [90] ) AGM-109K: högexplosiv WDU-25A/B 450 kg (425 [90] )
|
OFBCH WDU-7/B 295 kg (penetrerande WDU-18/B Condor [89] ) | |
Styrsystem på marschsträckan | tröghet ( INS ) med terrängkonturkorrigering ( TERCOM AN/DPW-23 )
|
INS | INS + TERCOM | INS P-1000 + TERCOM AN/DPW-23 | INS RPU (på KLG ) + korrigering från TERCOM AN/DPW-23 och NAVSTAR - mottagare (5-kanals) | INS P-1000 + TERCOM AN/DPW-23 | INS RPU (på KLG ) + korrigering från TERCOM AN/DPW-23 och NAVSTAR - mottagare (5-kanals) | INS (på VOG ) + brusimmun NAVSTAR + TERCOM + tvåvägs satellitkommunikation ( VHF ) med en operatör | SINS LN-35 (på KLG ) + TERCOM AN/DPW-23 | ||
Målstyrningssystem | ARLGSN AN/DSQ-28 (10-20 GHz) | OESC på digitala terrängkartor AN / DXQ-1 ( DSMAC) | OESC DSMAC IIA | OESC AN/DXQ-1 ( DSMAC ) | OESC DSMAC IIA | OESC DSMAC IV | OESC DSMAC IV | OESK DSMAC II + Infraröd sökare ( IIR , AGM-109K/L) | |||
Noggrannhet ( KVO ) | 80 m (35 m [86] ) | 80 m | 20-25 m (10 m [86] ) | 10-15 m (8 m [86] ) | 20-25 m (10 m [86] ) | 10-15 m | 5-10 m |
Amerikanska missiler med en kärnstridsspets | |
---|---|
ICBM och tidiga IRBM | |
SLBM | |
KR | |
sen IRBM och taktisk | |
V-V, P-V och P-P | |
ingår inte i serien |
|
amerikanska missilvapen | |||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
"luft till luft" |
| ||||||||||||||||||||||||||||
"yta-till-yta" |
| ||||||||||||||||||||||||||||
"luft-till-yta" |
| ||||||||||||||||||||||||||||
"yta-till-luft" |
| ||||||||||||||||||||||||||||
Kursiv stil indikerar lovande, experimentella eller icke-seriella produktionsprover. Från och med 1986 började bokstäver användas i indexet för att indikera lanseringsmiljön/målet. "A" för flygplan, "B" för flera uppskjutningsmiljöer, "R" för ytfartyg, "U" för ubåtar, etc. |
US Navy under efterkrigstiden (1946-1991) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|